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Abstract

A large class of seemingly disparate Markov chains can be modeled as random walks

on the chambers of hyperplane arrangements. Examples include models from computer

science, statistical mechanics, military campaigns, and card shuffling, as well as many

natural random walks on finite reflection groups. A remarkable feature of these chains

is that the general theory is fairly complete. For instance, it has been established that

the corresponding transition matrices are diagonalizable over the reals with explicitly

computable nonnegative eigenvalues of known multiplicity. Moreover, a description of

the stationary distributions and a criterion for ergodicity are known, and there are simple

upper bounds on the rates of convergence.

The present work continues these investigations by providing an explicit construction

of the right eigenfunctions corresponding to the largest eigenvalues and a general pre-

scription for finding others. For certain important classes of chamber walks, we are able

to provide a basis for the eigenspace corresponding to the subdominant eigenvalue and

we show that several interesting statistics arise in this fashion. In addition, we demon-

strate how these eigenfunctions can be used to obtain upper and lower bounds on the

variation distance to stationarity. We also discuss connections with Stein’s method, in-

cluding as an aside a derivation of some of the eigenfunctions for certain random walks

on the symmetric group which do not fit into the hyperplane paradigm. Along the way,

we give generalizations and alternate proofs of some known results and introduce a novel

combinatorial description of hyperplane walks which we have found to be quite useful.

vi



Chapter 0

Introduction

This thesis has been written for a very general audience and thus contains a good deal of

background material which can be skipped by those already familiar with various aspects

of the subject.

We begin in Chapter 1 with an overview of (finite state space, discrete time) Markov

chain theory and much of the first chapter will be routine to practitioners of the subject.

The first section reviews basic concepts such as ergodicity and reversibility, and the second

addresses ideas related to the study of mixing times. No new results appear in either of

these sections and they can be skimmed over quickly by anyone with a background in

probability. The third section is concerned with lumped chains and product chains, with

many of the basic ideas coming from [48]. Markov chain lumping plays a central role in the

derivation of eigenfunctions for hyperplane chamber walks, and ideas involving product

chains are also used in several examples. Though the most important results about

lumped Markov chains for purposes of the present work are classical, we also introduce a

new construction which allows one to recover left eigenfunctions from associated chains

on smaller state spaces in this section. These results do not apply to hyperplane walks
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in general, but we show that they can be used to study random walks on finite groups.

We also extend some known results concerning product chains to allow for more general

transition dynamics.

In Chapter 2 we move on to random walks on hyperplane arrangements. The first

section mostly covers standard facts about hyperplane arrangements, but we also intro-

duce a new combinatorial description of faces and their products which provides a nice

way of visualizing hyperplane chamber walks and generalizes to an intermediate position

between random walks on oriented matroids and left-regular bands. Briefly, we associate

each sign sequence corresponding to a face in the arrangement with a row of colored

tiles and explain how the product of two faces can be visualized in terms of stacking.

Once one knows the rows of tiles corresponding to the initial chamber and the support

of the face measure (which depend on the underlying arrangement), the hyperplane de-

scription can be abstracted away entirely. In addition to providing a convenient visual

aid and a generalization of hyperplane chamber walks, this perspective captures many of

the essential features of these chains with regard to mixing behavior and simplifies some

of the arguments contained herein. In the second section, we survey the known results

concerning hyperplane chamber walks and include some original proofs as well. We also

derive an upper bound on the variation distance which is equivalent to that obtained in

[8] by Möbius inversion, but is more computationally tractable. The third section con-

tains examples of various chamber walks to motivate the subject and provide concrete

examples to illustrate the results presented so far. Most of these examples can be found

in [8, 12], though we also present some original models of conquering territories, provide

an alternative analysis of random-to-top shuffles in terms of product chains, and suggest
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some other models related to coupon collecting, voting, and random walks on Young

tableaux. We conclude the second chapter with a brief discussion of generalizations to

random walks on rows of colored tiles, oriented matroids, and left-regular bands.

Chapter 3 forms the core of this thesis and readers who are already acquainted with the

material in [12, 8, 7] and are primarily interested in results concerning eigenfunctions could

probably begin here without missing very much. We begin in the first section by showing

that chamber walks are lumpable with respect to equivalence relations that induce random

walks on the chambers of subarrangements. This is equivalent to a result in [5] concerning

functions of such Markov chains. It then follows that we can recover eigenfunctions for

the original chain from those of the lumped chain, which enables us in particular to

compute the eigenfunctions corresponding to eigenvalues indexed by hyperplanes. Under

standard assumptions on the face measure, we show that the eigenfunctions so constructed

are linearly independent. In the second section, we provide explicit computations for a

variety of hyperplane chamber walks and show that a large class of walks on the chambers

of the braid arrangement have a common eigenspace for the subdominant eigenvalue for

which we can compute a convenient basis. The third section begins with a discussion

of possible uses of Markov chain eigenfunctions and some examples which include the

expectation of various statistics after any number of steps in several standard Markov

chains. We then recall the framework using Wilson’s method which allows one to compute

lower bounds on the variation distance to stationarity in terms of eigenfunctions, and we

provide a general variance bound for eigenfunctions for walks on the braid arrangement

which is useful for determining good choices of distinguishing statistics both in terms of

optimality and computation simplicity. To exemplify the technique, we establish a lower
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bound for shuffles which proceed by choosing m cards at random and then moving them

to the top of the deck while retaining their original relative order. These shuffles were

studied previously in [24] and [8], and our lower bound matches the upper bound up to a

factor of 4. To the best of the author’s knowledge, this is the first lower bound given for

these shuffles, though we conjecture that the known upper bound gives the correct mixing

time. Next, we establish that hyperplane chamber walks are stochastically monotone with

respect to a variety of partial orders related to the weak Bruhat order and use techniques

from [31, 47] to find upper bounds on variation distance in certain cases. These upper

bounds only provide a technical improvement on the known bounds, but serve as a nice

demonstration of the applicability of this relatively novel method in Markov chain theory.

We conclude the third chapter with a discussion of connections between Stein’s method

and Markov chain eigenfunctions, and as an aside, we use ideas from representation

theory and the combinatorial central limit theorem to construct an explicit eigenbasis for

a typically large eigenvalue of any random walk on the symmetric group which is driven

by a measure that is constant on conjugacy classes.

In the final chapter, we provide a brief overview of our results and their significance,

as well as a discussion of possible directions for future research.
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Chapter 1

Markov Chains

1.1 Basic Concepts

Given a measurable space (S,S), a sequence of S-valued random variables {Xk}∞k=0 is

said to be a Markov chain on S with respect to a filtration {Fk} if Xk ∈ Fk and

P{Xk+1 ∈ B|Fk} = P{Xk+1 ∈ B|Xk}

for all n ∈ N0, B ∈ S [34]. S is called the state space of the Markov chain and in

all examples considered here we assume that |S| = N < ∞, S = 2S . Also, we will

typically take Fk = σ(X0, X1, ..., Xk), so the interpretation is that {Xk}∞k=0 is a random

S-valued process which depends on the past only through the present. We will restrict out

attention to temporally homogeneous Markov chains so that the transition mechanism

can be expressed as the N ×N stochastic matrix P , indexed by the elements of S, given

by

P (s, t) = P{Xk+1 = t|Xk = s},
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independently of n. Taking rth powers gives the r-step transition matrix P r = P · P r−1

with entries P r(s, t) = P{Xk+r = t|Xk = s}. Thus the distribution of Xr given that the

chain began at X0 = s is given by P rs (·) = P r(s, ·). If the chain is initially distributed as

X0 ∼ µ, then the distribution after r steps is written as Xr ∼ P rµ . (By a slight abuse of

notation, P rs represents the case when the initial distribution is the point mass at s.) We

will often find it useful to think of P as an operator which acts on functions f : S → C

by

Pf(s) =
∑
t∈S

P (s, t)f(t)

and acts on probability measures by

µP (t) =
∑
s∈S

µ(s)P (s, t).

A useful construct in the study of temporally homogeneous, finite state space Markov

chains is that of a random mapping representation of the transition operator. This is a

function f : S × Λ→ S, along with a Λ-valued random variable Z, satisfying

P{f(s, Z) = t} = P (s, t).

The corresponding Markov chain is obtained by successive applications of the random

mapping: Xk+1 = f(Xk, Zk+1) where Z,Z1, Z2, ... is an i.i.d. sequence. If P is a transition

matrix on a finite state space S = {s1, s2, ..., sN}, then we can define

Fs(0) = 0, Fs(m) =

m∑
i=1

P (s, si)
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for each s ∈ S, m ∈ [N ]. Letting Z ∼ U(0, 1), and setting

f(s, z) =
N∑
i=1

si1(Fs(i−1),Fs(i)](z) where 1(a,b](z) =


1, z ∈ (a, b]

0, else

,

we see that

P{f(s, Z) = si} = P{Fs(i− 1) < Z ≤ Fs(i)} = P (s, si),

hence every transition matrix on a finite state space has a random mapping representation

[48]. It should be noted that random mapping representations are not unique and in many

cases there are much more natural representations than the one used above to demonstrate

existence. For example, simple random walk on a p-cycle has transition probabilities

P{Xk+1 = j|Xk = i} =


1
2 , j = i± 1(modp)

0, else

and random mapping representation (f, Z) where Z = 2W − 1, W ∼ Bernoulli(1
2), and

f(s, z) = s+ z(modp).

One of the more interesting features of many Markov chains is that the k-step distri-

butions tend towards an equilibrium as k grows. We say that a probability measure π is

a stationary distribution for P if it satisfies

π(t) =
∑
s∈S

π(s)P (s, t)

for all t ∈ S - that is, if π is a left eigenvector of P with corresponding eigenvalue 1. For

general finite state space Markov chains, convergence to a stationary distribution depends

on the properties of irreducibility and aperiodicity. (When dealing with countably infinite

state space Markov chains, one needs the additional assumption of positive recurrence.)
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A Markov chain is said to be irreducible if for all s, t ∈ S, there exists some k = k(s, t)

such that P k(s, t) > 0. The period of a state s is defined as

ds = gcd{i ∈ N : P i(s, s) > 0},

and a Markov chain is called aperiodic if ds = 1 for all s ∈ S. If the chain is irreducible,

then it is aperiodic if ds = 1 for any s ∈ S. A Markov chain is both irreducible and

aperiodic if and only if there is some K ∈ N such that P k(s, t) > 0 for all s, t ∈ S,

k ≥ K, so it follows from the Perron-Frobenius theorem for positive matrices and the

fact that P is stochastic that the eigenvalues satisfy 1 = λ1 > |λi| for i = 2, ..., N . (The

Perron-Frobenius Theorem for nonnegative matrices shows that if P is irreducible, then 1

is a simple eigenvalue and there are corresponding left and right eigenvectors with strictly

positive entries.) These observations imply the fundamental theorem of finite state space

Markov chains: An irreducible Markov chain has a unique and strictly positive stationary

distribution π, and if the chain is aperiodic as well, then

lim
n→∞

Pn(s, t) = π(t)

for all s, t ∈ S. If a Markov chain is both irreducible and aperiodic, we will call it regular.

If the chain converges to a unique stationary distribution, independent of the initial state,

then we say that is ergodic. The above result can thus be stated as “Every regular finite

state space Markov chain is ergodic.”

Also, we say that P is reversible with respect to a probability measure π if it satisfies

the detailed balance equations

π(x)P (x, y) = π(y)P (y, x)
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for all x, y ∈ S. Reversibility is a sufficient, but not necessary, condition for the existence

of a stationary distribution. If we let

〈f, g〉 =
∑
s∈S

f(s)g(s)

be the usual inner product on RS and define the new inner product

〈f, g〉π =
∑
s∈S

f(s)g(s)π(s),

then reversibility implies that P is a self-adjoint operator with respect to the inner product

〈·, ·〉π, so it follows from the spectral theorem that P has real eigenvalues and a basis of

eigenvectors which are orthonormal with respect to 〈·, ·〉π. This fact gives rise to many

useful theorems concerning the convergence rates of reversible Markov chains. Even if an

irreducible Markov chain is not reversible, we can define its time reversal in terms of the

transition matrix

P ∗(s, t) =
π(t)

π(s)
P (t, s).

Thus P ∗ is the adjoint of P with respect to the inner product 〈·, ·〉π , and it is not

difficult to verify that if {Xk} is a Markov chain with transition matrix P and positive

stationary distribution π, then, P ∗ is the transition matrix of a Markov chain {Yk} which

has stationary distribution π and satisfies

Pπ{X0 = x0, X1 = x1, ..., XT = xT } = Pπ{Y0 = xT , Y1 = xT−1, ..., YT = x0}

for all T ∈ N, x0, ...xT ∈ S [48]. In many cases one can use facts about reversible chains to

obtain results for a nonreversible chain by considering the multiplicative reversibilization

of P given by the product PP ∗, which is a stochastic matrix with stationary distribution

9



π [36]. (A similar construct which is useful for continuous time Markov processes is the

additive reversibilization P+P ∗

2 [50].) Though most chains considered here will not be

reversible, it is good to keep this definition in mind for the sake of comparison as we

will be dealing primarily with chains having real eigenvalues and linearly independent

eigenvectors. Also, we will be considering time reversals in several examples.

1.2 Mixing

The most common question about ergodic Markov chains is how long will it take a

given chain with initial distribution µ to get close to its equilibrium distribution π. In

order to make this definition rigorous, we must introduce a measure of distance between

probability measures. We will primarily be concerned with the total variation metric

defined by

‖µ− ν‖TV = maxA⊆S |µ(A)− ν(A)| .

Thus the total variation distance measures the largest disagreement between two proba-

bility measures concerning the likelihood of an event. One can show that equivalent (and

often useful) definitions are [21]

1

2

∑
s∈S
|µ(s)− ν(S)| = ‖µ− ν‖TV =

1

2
sup ‖f‖∞≤1 |µ(f)− ν(f)|

where µ(f) =
∑

s∈S µ(s)f(s).

Another useful characterization of total variation distance involves coupling. A cou-

pling of two probability measures P1 and P2 defined on a finite set S is a probability Q
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defined on S×S with margins P1 and P2. Denoting the diagonal by ∆ = {(s, s) : s ∈ S},

we can define

‖P1 − P2‖TV = inf{Q(∆C) : Q is a coupling of P1 and P2}.

Equivalently, a pair of random variables (X,Y ) on S × S is said to be a coupling of P1

and P2 if X ∼ P1 and Y ∼ P2, and we can define

‖P1 − P2‖TV = inf{P{X 6= Y } : (X,Y ) is a coupling of P1 and P2}.

The infima are achieved in both cases. Now suppose that P is the transition matrix

for a Markov chain on S with stationary distribution π. Let {X1
k}∞k=0 be a Markov

chain with transition matrix P and initial distribution µ, and let {X2
k}∞k=0 be a Markov

chain with transition matrix P and initial distribution π. Define the coupling time by

T = min{k ≥ 0 : X1
k = X2

k}. Then, setting

X3
k =


X2
k , T ≤ k

X1
k , T > k

,

the pair (X1
k , X

3
k) is a coupling of P kµ and π, so the coupling definition of total variation

distance implies that

∥∥∥P kµ − π∥∥∥
TV
≤ P{T > k}.

The general idea is that we start one copy of the chain in a specified distribution, let

another copy begin in stationarity, and then make them evolve according to the same

transition mechanism until they meet and proceed simultaneously forever after. As the
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second chain was stationary to begin with, it remains so for all time, hence the first chain

must have equilibriated by the time that they have coupled [21, 48].

A related (but distinct) construction is that of strong stationary times introduced in

[3]: If T is a randomized stopping time for {Xn}∞n=0 such that

P{Xk = s|T = k} = π(s) for all s ∈ S, 0 ≤ k <∞,

then T is called a strong stationary time. Equivalently, a strong stationary time T

is a randomized stopping time such that XT ∼ π and T is independent of XT . (A

randomized stopping time allows the decision of whether to stop at time k to depend not

only on {X0, ..., Xk}, but also on the values of other random quantities independent of

{Xk+1, Xk+2, ...}.) If we drop the independence assumption and only require that T is a

randomized stopping time with P{XT = s} = π(s), then we say that T is a stationary

time. It can be shown that if T is a strong stationary time, then

∥∥∥P kx − π∥∥∥
TV
≤ sep(P kx , π) ≤ P (T > k),

where sep denotes the separation distance defined in the following paragraph. Moreover,

there is an optimal strong stationary time such that the second inequality is an equality,

and this provides one way to define separation distance. Note that coupling times are

not necessarily strong stationary times. However, Aldous and Diaconis have shown that

coupling subsumes strong stationary times in the sense that if T is a strong stationary

time for a Markov chain, then there exists a coupling with coupling time T [4]. Chapter

4 in [21] contains more information on coupling and strong stationary times, and Igor
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Pak’s PhD thesis [53] includes numerous clever applications of strong stationary times to

the study of Markov chain convergence.

There are many other standard measures of distance between Markov chains, including

the lp distances, separation distance, Hellinger distance, and Kullback-Leibler divergence.

We will only define the first two as they are the most relevant to the ensuing discussion.

Given 1 ≤ p <∞ and a probability measure π, we can define the lp(π) norm on RS by

‖f‖π,p =

(∑
s∈S
|f(s)|p π(s)

) 1
p

.

We define the l∞ norm by

‖f‖π,∞ = ‖f‖∞ = max
s∈S
|f(s)| .

When P kµ is the k-step distribution of an ergodic Markov chain with initial distribution

µ and positive stationary measure π, these norms gives rise to the lp distances between

P kµ and π by setting

dp(P
k
µ , π) =

∥∥∥∥∥P kµπ − 1

∥∥∥∥∥
π,p

.

As expected, we have the inequality dp(P
k
µ , π) ≤ dq(P

k
µ , π) for all 1 ≤ p ≤ q ≤ ∞. The

case p = 1 gives (twice) the total variation distance, and the case p =∞ is related to the

more commonly used separation distance,

sep(µ, ν) = d∞(µ, ν) = max
s∈S

{
1− µ(s)

ν(s)

}
,

which satisfies

‖µ− ν‖TV ≤ sep(µ, ν).
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Note that the lp and separation distances are not actually metrics because of asymmetry.

However, the separation distance, like the total variation metric, always takes values in

[0, 1] [50, 21].

Because we often want a measure of convergence which is independent of the initial

distribution, we also define the maximal variation

∥∥∥P k − π∥∥∥
TV ∗

= sup{
∥∥∥P kµ − π∥∥∥

TV
: µ is a probability measure}.

It can be shown that this supremum is realized by a point mass, so we may simply write

∥∥∥P k − π∥∥∥
TV ∗

= max
s∈S

∥∥∥P ks − π∥∥∥
TV

.

Similarly, we write

d∗p(P
k, π) = max

s∈S
dp(P

k
s , π), sep∗(P k, π) = max

s∈S
sep(P ks , π).

It is worth observing that sep∗(P k, π) and d∗p(P
k, π) are submultiplicative as functions of

k in the sense that

d∗p(P
k+l, π) ≤ d∗p(P k, π)d∗p(P

l, π).

Total variation is not submultiplicative, but we do have the inequality

∥∥P t − π∥∥
TV ∗ ≤ 2m−1

m∏
i=1

∥∥P ti − π∥∥
TV ∗ for t =

m∑
i=1

ti.

Finally, it should be noted that if P is the kernel of an ergodic Markov chain, then all of

the above distances to stationarity are nonincreasing in k [51, 50].
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With these definitions at hand, we can ask quantitative questions about convergence

rates. The quantity of interest here is the (total variation) mixing time defined as follows:

Given ε > 0, set

tmix(ε) = min{k ∈ N0 :
∥∥∥P ks − π∥∥∥

TV
< ε},

t∗mix(ε) = min{k ∈ N0 :
∥∥∥P k − π∥∥∥

TV ∗
< ε}.

We define the mixing time as tmix = tmix(1
4) and similarly for t∗mix. Of course, these

quantities can also be defined with respect to other distances in an analogous manner.

Much of the current research in Markov chain theory is focused on estimating mixing

times and the literature is replete with different techniques for doing so. However, one

typically has to have a very good understanding of the particular chain in question in

order to get accurate results, so the general techniques will only get you so far. We have

already seen how to upper bound total variation distance, and thus total variation mixing

time, by constructing couplings and strong stationary times. The bound from couplings

used the fact that total variation can be defined in terms of an infimum over certain

couplings, and the strong stationary bound arose because separation may be defined as

an infimum over strong stationary times and separation upper-bounds total variation.

Again, though these methods work in theory, one must usually have a detailed knowledge

of the chain in question in order to construct couplings or strong stationary times which

yield sharp estimates.

As with the strong stationary time bound, other inequalities between various distances

allow one to bound a given distance in terms of bounds involving another, and different
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definitions of distances involving maxima and minima may also be used to get bounds.

For example, since total variation is defined as a maximum over subsets of the state space,

this definition can be used to lower-bound the total variation distance in the sense that

∣∣∣P ks (A)− π(A)
∣∣∣ ≤ ∥∥∥P ks − π∥∥∥

TV
≤
∥∥∥P k − π∥∥∥

TV ∗

for all A ⊆ S. Often one chooses A = {s ∈ S : f(s) > α} for some α ∈ R, f ∈ RS . This is

known as the method of distinguishing statistics and f is generally chosen to be an eigen-

function corresponding to the largest nontrivial eigenvalue. The term
∣∣P ks (A)− π(A)

∣∣
may be estimated using Chebychev’s inequality or more refined arguments such as ap-

pears in Proposition 7.8 in [48]. David Wilson’s lower bound technique is related to

this idea and provides a computationally simpler method of obtaining lower bounds via

eigenfunctions [70]. These ideas are discussed further in Subsection 3.3.1. Other useful

lower bounds involve representing the transition matrix as a weighted directed graph with

vertices corresponding to the states and edge set {(s, t) ∈ S2 : Q(s, t) = π(s)P (s, t) > 0}

where the edge (x, y) has weight Q(x, y). One can then obtain lower bounds in terms

of the degrees, diameters, and bottleneck ratios, respectively, of these transition graphs.

The reader is referred to chapter 7 in [48] for more details.

Another common class of bounds involve the spectrum of the operator P . For instance,

we have seen that the eigenvalues of the transition operator of a regular Markov chain

satisfy 1 = λ1 > |λi| for i = 2, ..., N . By considering the Jordan normal form of P , one
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sees that the exponential rate of convergence is governed by second largest eigenvalue (in

modulus)

λ∗ = max
2≤i≤N

{|λi|}.

Indeed, for any regular Markov chain, we have the bound [50]

1

2
λk∗ ≤

∥∥∥P k − π∥∥∥
TV ∗

.

An easy proof of this fact follows from the characterization of total variation ‖µ− ν‖TV =

1
2 sup ‖f‖∞≤1 |µ(f)− ν(f)|. Namely, letting λi be an eigenvalue with |λi| = λ∗ and ϕ an

associated right eigenfunction normalized so that ‖ϕ‖∞ = 1, and observing that π(ϕ) = 0

since π is a left eigenfunction corresponding to 1 6= λi, we have

∥∥∥P ks − π∥∥∥
TV

=
1

2
sup ‖f‖∞≤1

∣∣∣P ks (f)− π(f)
∣∣∣

≥ 1

2

∣∣∣P ks (ϕ)− π(ϕ)
∣∣∣ =

1

2

∣∣∣λki ϕ(s)− 0
∣∣∣ =

1

2
λk∗ |ϕ(s)| ,

and the result follows upon maximizing over s ∈ S.

If P is reversible as well, then it has an orthonormal set of eigenfunctions {φi}Ni=1

corresponding to real eigenvalues 1 = λ1 > λ2 ≥ ... ≥ λN > −1 and a relatively straight-

forward computation gives the upper bound

4
∥∥∥P ks − π∥∥∥2

TV
≤

N∑
i=2

λ2k
1 φi(s)

2 ≤ λ2k
∗

1− π(s)

π(s)
.

If P is nonreversible, then we have the bound

4
∥∥∥P ks − π∥∥∥2

TV
≤
λkPP ∗

π(s)
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where λPP∗ is the largest nontrivial eigenvalue of PP ∗, the multiplicative reversibilization

of P [36]. Even when λ∗ is not known, there are a whole host of fascinating techniques for

estimating it, such as the canonical path bounds discussed in [23]. Nonetheless, though the

first of the above upper bounds for reversible chains is often sharp, estimates involving

only the subdominant eigenvalue do not typically suffice for accurate non-asymptotic

results.

There are numerous other methods, drawing from a wide range of disciplines, for ob-

taining bounds on Markov chain convergence rates that have been successfully applied in

several examples. Among the more prominent omitted from the above discussion are the

isoperimetric bounds (including the method of evolving sets) and the Nash, log-Sobolev,

and other functional analytic bounds. There is also an extensive literature on random

walks on finite groups which includes comparison techniques and several remarkable rep-

resentation theoretic arguments for obtaining bounds. For the sake of brevity, we refer

the interested reader to [50, 63, 21, 2]. (For more connections between Markov chains

and other areas of mathematics, the author also highly recommends the survey [28].)

Before moving on, however, a few words about random walks on groups are in order

since some of the examples we consider can be modeled as such. Given a finite groupG and

a probability measure p with support K ⊆ G, we can construct a random walk on G by

beginning at some initial state X0 = h and proceeding by choosing gk from p and forming

the product Xk = gkXk−1. The transition matrix is thus given by P (x, y) = p(yx−1). It

is elementary to show that the Markov chain so constructed is irreducible as long as K

generates G and is ergodic if and only if K is not contained in a coset of a proper subgroup

of G, in which case the stationary distribution is the uniform measure on G. Also, the
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distance to stationarity is independent of the initial state [63]. Such random walks are

reversible precisely when p(g) = p(g−1) for all g ∈ G. When the walk is not reversible, we

can construct the time-reversal by setting p∗(g) = p(g−1) (so that P ∗(x, y) = p∗(yx−1)).

Letting {X∗k} denote the walk associated with P ∗, a few simple calculations show that

P (X∗k = g|X∗0 = h) = P (Xk = h|X0 = g),

P (X∗k = g−1|X∗0 = id) = P (Xk = g|X0 = id),∥∥∥(P ∗)k − U
∥∥∥
TV ∗

=
∥∥∥P k − U∥∥∥

TV ∗
.

These facts will be of interest later because certain hyperplane walks can be viewed as

time-reversals of well-known random walks on the symmetric group.

One of the most intriguing discoveries in Markov chain theory is that many families

of random walks exhibit a sharp phase transition in their convergence to stationarity

known as the cutoff phenomenon. In the words of Persi Diaconis [25], “The distance∥∥P kx − π∥∥TV stays close to its maximum value at 1 for a while, then suddenly drops to a

quite small value and then tends to zero exponentially fast.” More formally, suppose that

for a sequence of Markov chains {X(1)
k }, {X

(2)
k }, ... (with transition matrices P (1), P (2), ...

and stationary distributions π(1), π(2), ...), {X(n)
k } has ε−mixing time (with respect to

some distance)

t
(n)
mix(ε) = min{k ∈ N0 : d∗

(
(P (n))k, π(n)

)
< ε}.

We say that this sequence exhibits cutoff (with respect to that distance) if

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1
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for all ε ∈ (0, 1
2). Of course, we always have

t
(n)
mix(ε)

t
(n)
mix(1− ε)

≥ 1,

and if we only know that

sup
0<ε< 1

2

lim sup
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

<∞,

then we say that the sequence exhibits a pre-cutoff. Alternatively, if {tn}∞n=1 and {wn}∞n=1

are two sequences of nonnegative numbers such that wn ∈n→∞ o(tn)) and

lim
c→−∞

lim inf
n→∞

d∗
(

(P (n))btn+cwnc, π(n)
)

= 1,

lim
c→∞

lim sup
n→∞

d∗
(

(P (n))btn+cwnc, π(n)
)

= 0,

then we say that the sequence exhibits a (tn, wn) cutoff. Typically, tn = t
(n)
mix and we

call {wn} the cutoff window [33, 48]. The first example in which cutoff was observed

was the random transposition walk analyzed by Diaconis and Shahshahani using the

representation theory of the symmetric group [20], and the notion of cutoff first appeared

explicitly in [3], though a rigorous definition was not introduced until [25].

Many natural Markov chains have been shown to exhibit cutoff, but the general

phenomenon is still somewhat of a mystery. Persi Diaconis conjectures that in many

cases cutoff results from high multiplicity of the subdominant eigenvalue [25]. At an AIM

workshop held in Palo Alto in 2004, Yuval Peres noted that a necessary condition for a

sequence of reversible Markov chains to exhibit total variation cutoff is that limn→∞ t
(n)
mix ·

γn =∞ where γn = 1−λ(n)
∗ is the absolute spectral gap of P (n), and a slight modification

of Peres’ argument shows that this is true even for nonreversible chains. Peres conjectured
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that this condition is also sufficient, but counterexamples have since been constructed,

showing that this is not always the case [33, 15]. Still, it is likely that Peres’ conjecture

does hold under certain conditions. For example, it has been shown that if the transition

operators of such a sequence of Markov chains are normal (in the sense that they commute

with their adjoints), then in both discrete and continuous time, the sequence presents a

cutoff with respect to the distance d∗p, 1 < p <∞, if and only if limn→∞ t
(n)
mix ·γn =∞ [15,

16]. Peres’ conjecture has also been verified for continuous-time birth-and-death chains

started at an endpoint with respect to separation distance [29] and for all continuous-time

and lazy discrete-time birth-and-death chains with respect to total variation [33]. The

cutoff phenomenon has been identified in certain realizations of hyperplane walks [25],

but no general criterion for cutoff in hyperplane walks is known at present.

1.3 Products and Projections of Markov Chains

Two final concepts in Markov chain theory which we will find useful in our discussion of

hyperplane walks are projections and products of Markov chains. In the case of projec-

tions, one studies induced Markov chains on equivalence classes of the state space of a

given Markov chain, essentially restricting one’s attention to the evolution of particular

aspects of the original process. With products, one aggregates individual Markov chains

to obtain a description of a larger system in terms of component processes. Both con-

cepts involve a “big” chain and “little” chain(s), and the interest is in inferring properties

about the “big” chain from those of the “little” chain(s) and vice versa. We will see that
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random walks on hyperplane arrangements are particularly amenable to study in terms

of product and quotient constructions.

1.3.1 Projections

We begin with projections or “lumpings” of Markov chains. The setup here is a Markov

chain {Xk} with finite state space S and transition matrix P , and an equivalence relation

∼ on S. Letting [s] denote the equivalence class containing s ∈ S, we are interested in

the behavior of {[Xk]} regarded as a random process on S∗ = S/ ∼. The main results

relating {Xk} and {[Xk]} are summarized in the following theorem.

Theorem 1.3.1. Let P be the transition matrix of a Markov chain {Xk} having finite

state space S, and let ∼ be an equivalence relation on S. Set P (r, [s]) =
∑
t∼s

P (r, t).

If P (r, [s]) = P (q, [s]) for all [s] ∈ S∗ and all r, q ∈ S with r ∼ q, then {[Xk]} is a

Markov chain on S∗ with transition matrix P#([r], [s]) := P (r, [s]). The k-step transition

probabilities are given by (P#)k([r], [s]) =
∑
t∼s

P k(r, t) for all k ∈ N. Moreover,

1. If φ is a right eigenfunction of P corresponding to the eigenvalue λ and φ(q) = φ(r)

for all r, q ∈ S with r ∼ q, then φ#([r]) := φ(r) is a right eigenfunction of P# with

associated eigenvalue λ.

2. If ϕ is a right eigenfunction of P# with eigenvalue β, then ϕ[(r) := ϕ([r]) is a right

eigenfunction of P with eigenvalue β.

3. If ψ is a left eigenfunction of P with eigenvalue α, then ψ#([s]) :=
∑
t∼s

ψ(t) is a

left eigenfunction for P# with eigenvalue α. In particular, if π is stationary for P ,

then π# is stationary for P#.
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4. {[Xk]} is ergodic (respectively, regular, reversible) whenever {Xk} is, and we have

the total variation bound
∥∥P k − π∥∥

TV ∗
≥
∥∥(P#)k − π#

∥∥
TV ∗

for all k ∈ N.

5. If φ1, ..., φk : S → C are linearly independent with φi(q) = φi(r) for all q ∼ r,

i = 1, ..., k, then φ#
1 , ..., φ

#
k : S∗ → C are linearly independent as well. Similarly, if

ϕ1, ..., ϕk : S∗ → C are linearly independent, then so are ϕ[1, ..., ϕ
[
k : S → C.

Most of Theorem 1.3.1 is classical and proofs may be found in [48]. The distance

bounds follow from the extreme event characterization of total variation and the k-step

transition probabilities can be deduced from obvious induction arguments. Inheritance

of ergodicity/regularity/reversibility may be checked directly from the definitions. For

property 5, note that if α1φ
#
1 + ...+ αkφ

#
k ≡ 0 is a nontrivial dependence relation, then

so is α1φ1 + ... + αkφk ≡ 0 and conversely. The remaining assertions are verified by

straightforward computations.

Much of Theorem 1.3.1 can also be interpreted in terms of linear algebra. For example,

writing S = {x1, ..., xn}, S∗ = {[xs1 ], ..., [xsm ]}, we can define R to be the n×m matrix

with entries Rij = 1[xsj ](xi) and define Q to be the m × n matrix with entries Qij =

|[xsi ]|−11[xsi ]
(xj). A bit of matrix multiplication shows that QR is the m ×m identity

matrix and P# = QPR. The condition P (r, [s]) = P (q, [s]) for all r, s ∈ S, q ∼ r

is equivalent to the statement PR = RP# = RQPR, which gives another inductive

derivation of the k-step transitions for the lumped chain since

(P#)k = (QPR)k−1QPR = [QP k−1R]QPR

= QP k−1(RQPR) = QP k−1PR = QP kR.
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The preceding equations, along with the Cayley-Hamilton theorem, also provide an al-

ternative proof that every eigenvalue of P# is an eigenvalue of P . This is because if p is

the characteristic polynomial of P , then p(P#) = Qp(P )R = 0. Thus if q is the minimal

polynomial of P#, it must be the case that q divides p, so the set of roots of q (eigenvalues

of P#) is contained in the set of roots of p (eigenvalues of P ) [72].

The primary utility of the preceding theorem is to deduce spectral properties of the

original chain from those of the lumped chains. The latter are typically easier to work

with since the corresponding state spaces are smaller. Indeed, item 2 in Theorem 1.3.1

is the crux of our derivation of right eigenfunctions for random walks on the chambers of

hyperplane arrangements (where the equivalence classes are defined in terms of projections

onto various subarrangements).

One problem with this theorem is that one cannot recover left eigenfunctions of the

original chain from those of the lumped chain. However, under certain assumptions on

P and ∼, one can construct a Markov chain {Yk} on S∗ (which is not equal to {[Xk]}

in general) from which this information may be gleaned. This is made explicit in the

following theorem, which is in some sense dual to Theorem 1.3.1.

Theorem 1.3.2. Let P be the transition matrix of a Markov chain {Xk} having finite

state space S, and let ∼ be an equivalence relation on S. Set P ([r], s) =
∑
q∼r

P (q, s).

If P ([r], s) = P ([r], t) for all [r] ∈ S∗ and all s, t ∈ S with s ∼ t, then P#([r], [s]) :=

|[s]|
|[r]|P ([r], s) is the transition matrix for a Markov chain {Yk} on S∗. The k-step transition

probabilities are given by (P#)k([r], [s]) = |[s]|
|[r]|

∑
q∼r

P k(q, s) for all k ∈ N. Furthermore,

24



1. If φ is a left eigenfunction of P with eigenvalue λ such that φ is constant on equiv-

alence classes of S, then φ#([s]) := |[s]|φ(s) is a left eigenfunction of P# with

eigenvalue λ.

2. If ϕ is a left eigenfunction of P# with eigenvalue β, then ϕ[(s) := 1
|[s]|ϕ([s]) is a left

eigenfunction of P with eigenvalue β.

3. If χ is a right eigenfunction of P with eigenvalue α, then χ#([r]) := 1
|[r]|

∑
q∼r

χ(q) is

a right eigenfunction for P# with eigenvalue α.

4. Assume that {Xk} is ergodic with stationary distribution π. Then π(s) = π(t) for

all s, t ∈ S with s ∼ t and {Yk} is ergodic with stationary distribution π#. Also, if

P is reversible with respect to π, then P# is reversible with respect to π#. Finally,

we have the total variation bound
∥∥∥P k# − π#

∥∥∥
TV ∗
≤
∥∥P k − π∥∥

TV ∗
.

Proof. To see that P# is the transition matrix for a Markov chain on S∗, we first note that

the assumptions imply that P#([r], [s]) does not depend on the choice of equivalence class

representatives and P#([r], [s]) = |[s]|
|[r]|
∑

q∼r P (q, s) ≥ 0 for all [r], [s] ∈ S∗. Moreover, for

any [r] ∈ S∗, we have

∑
[s]∈S∗

P#([r], [s]) =
∑

[s]∈S∗

|[s]|
|[r]|

P ([r], s) =
∑

[s]∈S∗

1

|[r]|
∑
t∼s

P ([r], t)

=
∑

[s]∈S∗

∑
t∼s

1

|[r]|
∑
q∼r

P (q, t) =
1

|[r]|
∑
q∼r

∑
t∈S

P (q, t)

=
1

|[r]|
∑
q∼r

1 =
|[r]|
|[r]|

= 1,

hence P# is a well-defined stochastic matrix.
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The k-step transition probabilities may be computed inductively because if we assume

that (P#)k([r], [s]) = |[s]|
|[r]|
∑

q∼r P
k(q, s) for all [r], [s] ∈ S∗, then

(P#)k+1([r], [s]) =
∑

[u]∈S∗
P#([r], [u])(P#)k([u], [s])

=
∑

[u]∈S∗

|[u]|
|[r]|

P ([r], u)

(
|[s]|
|[u]|

∑
v∼u

P k(v, s)

)

=
|[s]|
|[r]|

∑
[u]∈S∗

∑
v∼u

P ([r], v)P k(v, s) =
|[s]|
|[r]|

∑
v∈S

P ([r], v)P k(v, s)

=
|[s]|
|[r]|

∑
q∼r

∑
v∈S

P (q, v)P k(v, s) =
|[s]|
|[r]|

∑
q∼r

P k+1(q, s).

Since (P#)k+1([r], [s]) =
∑

[u]∈S∗ P
#([r], [u])(P#)k([u], [s]) and P#([r], [s]) does not de-

pend on the choice of equivalence class representatives, it follows by induction that the

k-step transitions do not depend on the choice of representatives.

Now assume that φ satisfies φP = λφ and φ(s) = φ(t) whenever s ∼ t. Then

(φ#P#)([s]) =
∑

[r]∈S∗
φ#([r])P#([r], [s]) =

∑
[r]∈S∗

|[r]|φ(r)
|[s]|
|[r]|

∑
q∼r

P (q, s)

= |[s]|
∑
[r]∈S

∑
q∼r

φ(q)P (q, s) = |[s]|
∑
q∈S

φ(q)P (q, s)

= |[s]|λφ(s) = λφ#([s]).

Similarly, if ϕ satisfies ϕP# = λϕ, then

(ϕ[P ) (s) =
∑
r∈S

ϕ[(r)P (r, s) =
∑

[r]∈S∗

∑
q∼r

ϕ[(q)P (q, s)

=
∑

[r]∈S∗
ϕ[(r)

∑
q∼r

P (q, s) =
∑

[r]∈S∗

1

|[r]|
ϕ([r])P ([r], s)

=
1

|[s]|
∑

[r]∈S∗
ϕ([r])

|[s]|
|[r]|

P ([r], s) =
1

|[s]|
∑

[r]∈S∗
ϕ([r])P#([r], [s])
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=
1

|[s]|
(ϕP#)([s]) =

1

|[s]|
βϕ([s]) = βϕ[(s),

and if Pχ = αχ, then

(P#χ#)([r]) =
∑

[s]∈S∗
P#([r], [s])χ#([s]) =

∑
[s]∈S∗

|[s]|
|[r]|

P ([r], s)
1

|[s]|
∑
t∼s

χ(t)

=
1

|[r]|
∑

[s]∈S∗

∑
t∼s

P ([r], t)χ(t) =
1

|[r]|
∑
t∈S

∑
q∼r

P (q, t)χ(t)

=
1

|[r]|
∑
q∼r

(Pχ)(q) =
1

|[r]|
∑
q∼r

αχ(q) = αχ#([r]).

If {Xk} is ergodic with stationary distribution π, then

lim
k→∞

(P#)k([r], [s]) = lim
k→∞

|[s]|
|[r]|

∑
q∼r

P k(q, s)

=
|[s]|
|[r]|

∑
q∼r

π(s) = |[s]|π(s) = π#([s]).

Since P k([r], [s]) does not depend on the equivalence class representatives, this means that

π must be constant on the equivalence classes. If it is also the case that π(r)P (r, s) =

π(s)P (s, r) for all r, s ∈ S, then

π#([r])P#([r], [s]) = |[r]|π(r)
|[s]|
|[r]|

P ([r], s) =
∑
t∼s

π(r)P ([r], t)

=
∑
t∼s

π(r)
∑
q∼r

P (q, t) =
∑
t∼s

∑
q∼r

π(q)P (q, t) =
∑
t∼s

∑
q∼r

π(t)P (t, q)

=
∑
q∼r

π(s)
∑
t∼s

P (t, q) =
∑
q∼r

π(s)P ([s], q) = |[r]|π(s)P ([s], r)

= |[s]|π(s)
|[r]|
|[s]|

P ([s], r) = π#([s])P#([s], [r]).
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Finally,

∥∥∥P k#([r], ·)− π#(·)
∥∥∥
TV

=
1

2

∑
[s]∈S∗

∣∣∣P k#([r], [s])− π#([s])
∣∣∣

=
1

2

∑
[s]∈S∗

∣∣∣∣∣ |[s]||[r]|∑
q∼r

P k(q, s)− |[s]|π(s)

∣∣∣∣∣
=

1

2

∑
[s]∈S∗

|[s]|

∣∣∣∣∣ 1

|[r]|
∑
q∼r

(
P k(q, s)− π(s)

)∣∣∣∣∣
=

1

2

∑
[s]∈S∗

∑
t∼s

∣∣∣∣∣ 1

|[r]|
∑
q∼r

(
P k(q, t)− π(t)

)∣∣∣∣∣
≤ 1

2

∑
[s]∈S∗

∑
t∼s

1

|[r]|
∑
q∼r

∣∣∣P k(q, t)− π(t)
∣∣∣

≤ 1

2

∑
[s]∈S∗

∑
t∼s

max
q∼r

∣∣∣P k(q, t)− π(t)
∣∣∣

= max
q∼r

1

2

∑
t∈S

∣∣∣P k(q, t)− π(t)
∣∣∣

= max
q∼r

∥∥∥P k(q, ·)− π(·)
∥∥∥ .

Maximizing over [r] ∈ S∗ yields
∥∥∥P k# − π#

∥∥∥
TV ∗
≤
∥∥P k − π∥∥

TV ∗
.

To the best of the author’s knowledge, Theorem 1.3.2 is original, albeit quite similar

in spirit to the Theorem 1.3.1. Since we are assuming that P ([r], s) = P ([r], t) whenever

s ∼ t, P#([r], [s]) = |[s]|
|[r]|P ([r], s) = 1

|[r]|
∑

q∼r
∑

t∼s P (q, t), so given that Yk = [r], the

probability that Yk+1 = [s] is equal to the probability of transitioning from a state chosen

uniformly at random from the equivalence class [r] to any state in the equivalence class

[s] under the original dynamics. When viewed in this light, the condition that P ([r], ·)

is constant on equivalence classes just means that beginning at a random state in [r],

the original chain is equally likely to end up at each state in [s]. Though the preceding
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theorem does not seem to be applicable to hyperplane walks in general, it is useful for the

study of random walks on groups. For example, suppose that p is a probability measure

on a finite group G. Then p gives rise to a Markov chain on G with transition probabilities

P (x, y) = p(yx−1). For any H < G, we can define an equivalence relation on G by x ∼H y

if x and y belong to a common left coset of H. Then for any g1, g2 ∈ G, if x ∈ g1H and

y, z ∈ g2H (say y = g2h1 and z = g2h2 for some h1, h2 ∈ H), we have

P ([x], y) =
∑
h∈H

P (g1h, y) =
∑
h∈H

p(yh−1g−1
1 ) =

∑
h∈H

p(yhg−1
1 )

=
∑
h∈H

p(g2h1hg
−1
1 ) =

∑
h∈H

p(g2hg
−1
1 )

=
∑
h∈H

p(g2h2hg
−1
1 ) =

∑
h∈H

p(zhg−1
1 ) =

∑
h∈H

p(zh−1g−1
1 )

=
∑
h∈H

P (g1h, z) = P ([x], z).

Because the conditions Theorem 1.3.2 are satisfied, we can find left eigenfunctions for

random walks on groups by examining induced Markov chains on various coset spaces.

Observe that in this case we have |[x]| = |H| = |[y]| for all [x], [y] ∈ G∗, so we can

drop the scaling factors to obtain (P#)k([x], [y]) =
∑

w∼Hx P
k(w, y), φ#([x]) = φ(x),

ϕ[(y) = ϕ([y]), and χ#([x]) =
∑

w∼Hx χ(w).

Additionally, in the setting of the preceding paragraph, if x = g1h3 and w = g1h4 we

also have that

P (x, [y]) =
∑
h∈H

P (g1h3, g2h) =
∑
h∈H

p(g2hh
−1
3 g−1

1 ) =
∑
h∈H

p(g2hg
−1
1 )

=
∑
h∈H

p(g2hh
−1
4 g−1

1 ) =
∑
h∈H

p(g1h4, g2h) =
∑
h∈H

p(w, g2h)
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= P (w, [y]),

so random walks on groups are also lumpable with respect to ∼H in the sense of Theorem

1.3.1 as well. Note that in both of these cases, the only requirement is that G is a finite

group. In particular, we are not assuming that p is constant on conjugacy classes of G or

that the support of p generates G.

1.3.2 Products

A kind of converse method for constructing new chains from old ones involves taking

products. Here we are assuming that we have Markov chains on Ω1, ...,Ωn with transition

matrices P1, ..., Pn, and we wish to use these to build a chain on the product space

Ω := Ω1 × · · · × Ωn. One way to do so is to start with a probability measure µ on

[n] = {1, 2, ..., n} and to proceed by choosing i from µ, then updating the ith coordinate

according to Pi. The transition probabilities are thus

P (x, y) =

n∑
i=1

µ(i)Pi(xi, yi)
∏
j 6=i

1{yj = xj}

for x = (x1, ..., xn), y = (y1, ..., yn) ∈ Ω. Without loss of generality, we will suppose

henceforth that µ(i) > 0 for all i ∈ [n]. One easily verifies that if every Pi is irre-

ducible, then P is irreducible as well. The same also holds for aperiodicity. Now, if

f (1), ..., f (n) are functions on Ω1, ...,Ωn, then their tensor product is given by (f (1) ⊗

f (2) · · · ⊗ f (n))(x1, x2, ..., xn) := f (1)(x1)f (2)(x2) · · · f (n)(xn). One may check that if,

for each i ∈ [n], ϕ(i) is a right (respectively, left) eigenfunction for Pi corresponding
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to the eigenvalue λi, then ϕ = ϕ(1) ⊗ · · · ⊗ ϕ(n) is a right (respectively, left) eigen-

function for P corresponding to the eigenvalue
∑n

i=1 µ(i)λi. This follows by writing

P (x, y) =
∑n

i=1 µ(i)P̃i(x, y) where P̃i(x, y) = Pi(xi, yi)
∏
j 6=i 1{yj = xj} is the chain on Ω

which always moves in the ith coordinate according to Pi, and then verifying that ϕ is

an eigenfunction for P̃i with eigenvalue λi. In particular, we see that if π(1), ..., π(n) are

stationary for P1, ..., Pn, then π := π(1) ⊗ · · · ⊗ π(n) is stationary for P .

Now, keeping the above notation, suppose that B1 = {fi}N1
i=1 is a basis of eigen-

functions for P1 and B2 = {gj}N2
j=1 is a basis of eigenfunctions for P2. We claim that

B = {fi⊗ gj : fi ∈ B1, gj ∈ B2} is a basis of eigenfunctions for the product chain P under

any weighting µ such that µ(1), µ(2) > 0. We already know that each fi ⊗ gj ∈ B is an

eigenfunction for the product chain and that |B| = N1N2 = |Ω1| · |Ω2| = |Ω1 × Ω2|, so we

need only show that the fi⊗ gj are linearly independent. To this end, suppose that there

exist {ai,j}i∈[N1],j∈[N2] such that

0 =
∑
i,j

ai,jfi ⊗ gj(x) =

N1∑
i=1

N2∑
j=1

ai,jfi(x1)gj(x2) =

N1∑
i=1

fi(x1)

 N2∑
j=1

ai,jgj(x2)


for all x ∈ Ω1 × Ω2. Then, since the fi are linearly independent, we must have that∑N2

j=1 ai,jgj(x2) = 0 for all x2 ∈ Ω2, i ∈ [N1]. Of course, since the gj are linearly

independent, this means that ai,j = 0 for all i ∈ [N1], j ∈ [N2]. Consequently, the

fi⊗ gj are linearly independent, so B is indeed a basis. It follows by induction that if, for

i = 1, ..., n, Bi = {f (i)
j }
|Ωi|
j=1 is a basis of eigenfunctions for Pi, then B = {f (1)

j1
⊗ · · · f (n)

jn
:

f
(i)
ji
∈ Bi} is a basis of eigenfunctions for P . This shows that P is diagonalizable whenever

all of the Pi are diagonalizable. Moreover, in this case, the set of eigenvalues of P is

precisely {
∑n

i=1 µ(i)λi : λi is an eigenvalue of Pi}. Thus if λi∗ is the second largest (in
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modulus) eigenvalue of Pi, setting J = argmaxi∈[n]µ(i)λi∗, we see that the subdominant

eigenvalue of P is given by

λ∗ =
∑
i 6=J

µ(i) + µ(J)λJ∗ = 1− µ(J) + µ(J)λJ∗ = 1− µ(J)γJ∗

where γi∗ = 1 − λi∗ is the absolute spectral gap of Pi. A quick computation shows that

λ∗ is also the subdominant eigenvalue of the chain QJ = µ(J)PJ + (1− µ(J))I obtained

from PJ by adding a holding probability of 1 − µ(J). Thus the exponential mixing rate

of the product chain is the maximum of the exponential mixing rates of the composite

chains endowed with the appropriate holding probabilities.

If, in addition, each of the Pi is reversible with respect to πi, then there exist bases of

eigenfunctions for each Pi, Bi = {f (i)
j }
|Ωi|
j=1, such that the f

(i)
j are orthonormal in L2(πi).

Consequently, if ϕ = ϕ(1) ⊗ · · · ⊗ ϕ(n) and ψ = ψ(1) ⊗ · · · ⊗ ψ(n) are eigenfunctions in

B = {f (1)
j1
⊗ · · · f (n)

jn
: f

(i)
ji
∈ Bi}, then

〈ϕ,ψ〉π =
n∏
i=1

〈
ϕ(i), ψ(i)

〉
πi

=


1, ϕ = ψ

0, ϕ 6= ψ

,

so B is a basis of eigenfunctions for P which is orthonormal in L2(π), hence P is reversible

with respect to π. It turns out that the spectrum of P is given by σ(P ) = {
∑n

i=1 µ(i)λi :

λi is an eigenvalue of Pi} regardless of whether the Pi’s are all diagonalizable, but we will

postpone the proof temporarily as it will follow from a more general result.

Another way to form a Markov chain on the product space is to move every coordinate

at each step where Pi is the transition mechanism for the ith coordinate. This is referred

to as the tensor product chain P⊗ = P1 ⊗ · · · ⊗ Pn. Its transition probabilities are given

by P⊗(x, y) =
∏n
i=1 Pi(xi, yi). One readily verifies that if, for each i ∈ [n], φi is an
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eigenfunction for Pi with eigenvalue λi, then φ1⊗· · ·⊗φn is an eigenfunction for P⊗ with

eigenvalue
∏n
i=1 λi. To see that this is the case, note that if φ1, φ2 are right eigenfunctions

for P1, P2, then

[(P1 ⊗ P2) (φ1 ⊗ φ2)] (w, x) =
∑

(y,z)∈Ω1×Ω2

(φ1 ⊗ φ2) (y, z) (P1 ⊗ P2) ((w, x), (y, z))

=
∑
y∈Ω1

φ1(y)P1(w, y)
∑
z∈Ω2

φ2(z)P2(x, z)

= λ1φ2(w)λ2φ2(x) = λ1λ2φ1 ⊗ φ2(w, x).

The same argument applies to left eigenfunctions and the result follows by induction.

In fact, the above argument applies to generalized eigenvectors as well and this can

be used to establish eigenvalue multiplicities. Namely, suppose that λ1 is an eigenvalue

of P1 with algebraic multiplicity m1. Then it follows from the theory of Jordan forms

that there exist linearly independent vectors u1, ..., um1 such that for all 1 ≤ k ≤ m1,

P1uk = λ1uk + αk,k−1uk−1 + ... + αk,1u1 for some constants αi,j ∈ C, 1 ≤ j < i ≤ k.

Similarly, if λ2 is an eigenvalue of P2 with algebraic multiplicity m2 there exist linearly

independent vectors v1, ..., vm2 and constants {βi,j}1≤j<i≤m2 ⊆ C with P2vk = λ2vk +

βk,k−1vk−1 + ... + βk,1v1 for all 1 ≤ k ≤ m2. Now let k ∈ [m1], l ∈ [m2] be given. Then,

as with the ordinary eigenvectors, we have

[(P1 ⊗ P2) (uk ⊗ vl)] (w, x) =
∑

(y,z)∈Ω1×Ω2

(uk ⊗ vl) (y, z) (P1 ⊗ P2) ((w, x), (y, z))

=
∑
y∈Ω1

uk(y)P1(w, y)
∑
z∈Ω2

vl(z)P2(x, z)

= (P1uk)(w)(P2vl)(x)

33



= (λ1uk(w) + ...+ αk,1u1(w)) (λ2vl(x) + ...+ βl,1v1(x))

= λ1λ2 (uk ⊗ vl) (w, x) +
k−1∑
i=1

λ2αk,i (ui ⊗ vl) (w, x)

+

l−1∑
j=1

λ1βl,j (uk ⊗ vj) (w, x)

+
k−1∑
i=1

l−1∑
j=1

αk,iβl,j (ui ⊗ vj) (w, x)

= λ1λ2 (uk ⊗ vl) (w, x) +

kl−1∑
r=1

γr (u⊗ v)r (w, x).

Therefore, since k ∈ [m1], l ∈ [m2] were arbitrary and tensor products of linearly inde-

pendent vectors are linearly independent, {uk ⊗ vl}k∈[m1],l∈[m2] is a collection of m1m2

linearly independent generalized eigenvectors for P1⊗P2 corresponding to the eigenvalue

λ1λ2. Moreover, if (P1 ⊗ P2) (uk ⊗ vl) = λ1λ2 (uk ⊗ vl), then the above equation implies

that
∑kl−1

r=1 γr (u⊗ v)r = 0, so, since the (u⊗v)r’s are linearly independent, we must have

that γr = 0 for all r = 1, ..., kl−1. In particular λ2αk,i = λ1βl,j = 0 for all i = 1, ..., k−1,

j = 1, ..., l− 1. If λ1, λ2 6= 0, then this means that uk, ul are eigenvectors. Therefore, the

geometric multiplicity of any nonzero eigenvalue λ1λ2 of P1 ⊗ P2 is equal to the prod-

uct of the corresponding geometric multiplicities. Repeating the above argument and

invoking associativity shows that if for i = 1, ..., n, φi is a generalized eigenvector for Pi

with eigenvalue λi, then φ1 ⊗ · · · ⊗ φn is a generalized eigenvector for P1 ⊗ · · · ⊗ Pn with

eigenvalue
∏n
i=1 λi and that there are

∏n
i=1mi such generalized eigenvectors for

∏n
i=1 λi.

Because

|Ω| =
n∏
i=1

|Ωi| =
n∏
i=1

(m
(i)
1 + ...+m

(i)
k(i)) =

k(1)∑
i1=1

· · ·
k(n)∑
in=1

n∏
j=1

m
(j)
ij
,
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this gives a full basis of generalized eigenvectors, hence the spectrum of P⊗ is given

by σ(P⊗) = {
∏n
i=1 λi : λi ∈ σ(Pi)}. If 0 /∈ σ(P⊗) or each Pi is diagonalizable, the

eigenfunctions of P⊗ are precisely the tensor products of the component eigenfunctions.

(The preceding can also be inferred by letting ViJiV
−1
i be the Jordan decomposition for

each Pi and observing that

(V1 ⊗ · · · ⊗ Vn)−1(P1 ⊗ · · · ⊗ Pn)(V1 ⊗ · · · ⊗ Vn)

= (V −1
1 P1V1)⊗ · · · ⊗ (V −1

n PnVn) = J1 ⊗ · · · ⊗ Jn

where J1 ⊗ · · · ⊗ Jn is upper triangular with the desired diagonal entries.) Finally, one

may directly check that the tensor product chain is irreducible/aperiodic whenever each

of the component chains is, and arguing as in the preceding paragraphs shows that diag-

onalizability and reversibility are inherited as well.

Having examined these product and tensor product constructions, it is natural to

consider the following generalization. Namely, let Q be a probability measure on 2[n],

the collection of subsets of [n] = {1, ..., n}. Then one can construct a Markov chain

{Xk} = {(X(1)
k , ..., X

(n)
k )} on Ω by first picking S ⊆ [n] from Q and then moving each

coordinate i ∈ S according to Pi. We may assume that for each i ∈ [n], there is a set

S ⊆ [n] such that i ∈ S and Q(S) 6= 0 because if, we have X
(j)
k = X

(j)
0 for all k = N0,

then there is no point in including Ωj in the product to begin with. In this case, the

transition probabilities are given by

PQ(x, y) =
∑
S⊆[n]

Q(S)
∏
i∈S

Pi(xi, yi)
∏
j /∈S

1{yj = xj}.
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By construction, PQ is a stochastic matrix. When Q is supported on the singletons of

[n], this reduces to the product chain we first considered, and when Q([n]) = 1, we obtain

the tensor product chain. If we define P⊗S :=
⊗n

i=1

(
I|Ωi| + 1S(i)

[
Pi − I|Ωi|

])
for each

S ⊆ [n] (so that, for example, P⊗{1,3} = P1 ⊗ I|Ω2| ⊗ P3 ⊗ I|Ω4| ⊗ · · · ⊗ I|Ωn|), then we can

write PQ =
∑

S⊆[n]Q(S)P⊗S , hence PQ is a convex combination of tensor product chains

composed of the Pi’s and appropriate identity matrices.

Now suppose that φ1, ..., φn are eigenfunctions for P1, ..., Pn with eigenvalues λ1, ..., λn.

Then for each S ⊆ [n], φ1 ⊗ · · · ⊗ φn is an eigenfunction for P⊗S with eigenvalue∏
i∈S λi, and thus, by linearity, φ1 ⊗ · · · ⊗ φn is an eigenfunction for PQ with eigen-

value
∑

S⊆[n]Q(S)
∏
i∈S λi. Applying the same argument using the results for general-

ized eigenvectors of tensor product chains shows that this completely accounts for the

spectrum of PQ. Moreover, if PQ is nonsingular or each Pi is diagonalizable, then its

eigenfunctions are precisely the tensor products of the component eigenfunctions.

For ease of reference, we record these observations as

Theorem 1.3.3. Let P1, ..., Pn be transition kernels for Markov chains on Ω1, ...,Ωn and

let Q be a probability measure on 2[n] such that for each i ∈ [n], there is a set S ⊆ [n]

such that i ∈ S and Q(S) 6= 0. Let Ω = Ω1 × · · · × Ωn. Then the matrix given by

PQ(x, y) =
∑

S⊆[n]Q(S)
∏
i∈S Pi(xi, yi)

∏
j /∈S 1{yj = xj} for x, y ∈ Ω is the transition

kernel for a Markov chain on Ω. Moreover,

1. If φi is an eigenfunction of Pi with eigenvalue λi for i = 1, ..., n, then φ = φ1 ⊗

· · · ⊗ φn is an eigenfunction for PQ with eigenvalue
∑

S⊆[n]Q(S)
∏
i∈S λi.
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2. The spectrum of P⊗ is given by

σ(P⊗) = {
∑
S⊆[n]

Q(S)
∏
i∈S

λi : λi ∈ σ(Pi) for i = 1, ..., n}.

3. Every eigenfunction of PQ corresponding to a nonzero eigenvalue may be expressed

as a tensor product of the eigenfunctions of the component chains. If each Pi is

diagonalizable, then all eigenfunctions of PQ can be expressed in such a form.

4. If each of the component chains is irreducible, aperiodic, diagonalizable, or re-

versible, respectively, then so is PQ.

The above set up can be further generalized by letting the component transition

probabilities depend on which coordinates have been selected for updating. Specifically,

suppose that for each Ωi, we have a family of Markov kernels {P (S)
i }S⊆[n]. Then a step

in this product chain corresponds to first choosing a set S ⊆ [n] and then moving each

coordinate i ∈ S according to P
(S)
i , so that the product kernel is given by

P (x, y) =
∑
S⊆[n]

Q(S)
∏
i∈S

P
(S)
i (xi, yi)

∏
j /∈S

1{yj = xj}.

On the whole, it seems difficult to derive universal results at this level of generality.

However, if we suppose that for each i ∈ [n], the matrices {P (S)
i }S⊆[n] have the same

set of eigenfunctions, then the preceding analysis carries over directly. In particular, if

{P (S)
i }S⊆[n] is a commuting family of diagonalizable matrices for each i ∈ [n], then P is

diagonalizable and each of its eigenfunctions may be represented as a tensor product of the

component eigenfunctions. In a similar vein, we can define chains on the product space

as linear combinations of tensor product chains where the families of component kernels

have index set different from 2[n]. That is, if for each Pi, we have a family {P (S)
i }S∈I of
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transition operators and Q is a probability measure on I, then P =
∑

S∈I Q(S)P
(S)
1 ⊗

· · · ⊗ P (S)
n is the transition operator for a Markov chain on Ω1 × · · · × Ωn and much of

the same analysis applies. We will find this latter construction to be useful in computing

eigenfunctions for the random-to-top chain on Sn.

Finally, we observe that, as one would expect, product chains are lumpable with

respect to the equivalence relation induced by projection onto a subset of coordinates.

As before, let P1, ..., Pn be transition matrices for Markov chains on Ω1, ...,Ωn, let Q be

a probability on the subsets of [n], and consider the product chain on Ω = Ω1 × · · · ×Ωn

given by

PQ(x, y) =
∑
S⊆[n]

Q(S)
∏
i∈S

Pi(xi, yi)
∏
j /∈S

1{yj = xj}.

Observe that for any A ⊆ [n], we can define an equivalence relation on Ω by x ∼A y if

and only if xi = yi for all i ∈ A. Moreover, for every [y]A ∈ Ω∗ = Ω/ ∼A and every x ∈ Ω

, if we set QA(B) =
∑

T⊆[n]\AQ(B ∪ T ) for B ⊆ A, we have

PQ(x, [y]A) =
∑
z∼Ay

∑
B⊆A

∑
C⊆[n]\A

Q(B ∪ C)
∏
i∈B

Pi(xi, zi)
∏
j∈C

Pj(xj , zj)

×
∏

k∈A∩BC
1{zk = xk}

∏
l∈AC∩CC

1{zl = xl}


=
∑
B⊆A

∏
i∈B

Pi(xi, yi)
∏

k∈A∩BC
1{yk = xk}

×
∑
z∼Ay

∑
C⊆[n]\A

Q(B ∪ C)
∏
j∈C

Pj(xj , zj)
∏

l∈AC∩CC
1{zl = xl}


=

∑
B⊆A:

QA(B)6=0

∏
i∈B

Pi(xi, yi)
∏

k∈A∩BC
1{yk = xk}
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×
∑
z∼Ay

∑
C⊆[n]\A

Q(B ∪ C)
∏
j∈C

Pj(xj , zj)
∏

l∈AC∩CC
1{zl = xl}


=

∑
B⊆A:

QA(B)6=0

QA(B)
∏
i∈B

Pi(xi, yi)
∏

k∈A∩BC
1{yk = xk}

×
∑
z∼Ay

∑
C⊆[n]\A

Q(B ∪ C)

QA(B)

∏
j∈C

Pj(xj , zj)
∏

l∈AC∩CC
1{zl = xl}


=

∑
B⊆A:

QA(B)6=0

QA(B)
∏
i∈B

Pi(xi, yi)
∏

k∈A∩BC
1{yk = xk}

=
∑
B⊆A

QA(B)
∏
i∈B

Pi(xi, yi)
∏

k∈A∩BC
1{yk = xk}.

The penultimate equality is due to the fact that for each B ⊆ A with QA(B) 6= 0,

PQA,B (x[n]\A, z[n]\A) :=
∑

C⊆[n]\A

Q(B ∪ C)

QA(B)

∏
j∈C

Pj(xj , zj)
∏

l∈AC∩CC
1{zl = xl}

is a transition probability for the product chain on Ω[n]\A :=
∏
i∈[n]\A Ωi generated by

the probability measure QA,B(C) := Q(B∪C)
QA(B) on 2[n]\A. Since PQA,B (x[n]\A, z[n]\A) only

involves the coordinates in [n] \A, it follows from the definition of ∼A that

∑
z∼Ay

PQA,B (x[n]\A, z[n]\A) =
∑

z∈Ω[n]\A

PQA,B (x[n]\A, z) = 1.

Thus we see that PQ is lumpable with respect to ∼A in the sense of Theorem 1.3.1. A

completely analogous argument shows that the same applies to the more general chain

P (x, y) =
∑
S⊆[n]

Q(S)
∏
i∈S

P
(S)
i (xi, yi)

∏
j /∈S

1{yj = xj}

where the coordinate transition matrices are allowed to depend on the subset chosen from

Q.
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Chapter 2

Random Walks on Hyperplane Arrangements

2.1 Hyperplane Arrangements

The main class of Markov chains we will be considering in this thesis arise as random

walks on the chambers or faces of (finite, real, central) hyperplane arrangements. The

basic idea is that a collection of hyperplanes carves the underlying space into a bunch of

pieces called faces, and there is a natural way in which these faces can be multiplied by

one another. One can construct a Markov chain by repeatedly choosing a face according

to some probability distribution and then moving from the present face to its product

with the randomly chosen face. Before examining these chains in detail, we need to

establish some background and terminology concerning hyperplane arrangements. The

standard reference for hyperplane arrangements is the text [52] by Peter Orlik and Hiroaki

Terao, and Richard Stanley’s lecture notes [64] provide a nice, readable introduction. Our

discussion and notation is primarily based upon the paper [12] by Brown and Diaconis.

A finite hyperplane arrangement A = {Hi}mi=1 is a finite collection of hyperplanes in

a linear, affine, or projective space V . We will assume throughout that V = Rn, though
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it can also be of interest to consider vector spaces over other fields. (For example, Anders

Björner has an interesting paper which generalizes the Tsetlin library by considering

complex arrangements [10].) We will impose the additional requirement that ∩mi=1Hi 6= Ø,

in which case we may assume that 0 ∈ ∩mi=1Hi, so that the Hi are just codimension 1

subspaces of Rn. Such an arrangement is called central. If ∩mi=1Hi = {0}, then we say

that the arrangement is essential. This assumption is occasionally invoked in discussions

of hyperplane walks, but we will not need it here. (One can always work with essential

arrangements by taking the quotient of V by the intersection ∩mi=1Hi, and one can pass

from noncentral arrangements to central arrangements by a process called coning, which

is essentially an embedding of the arrangement in V ×R defined so that the intersection

is nonempty. Neither of these processes will affect the combinatorial constructs which

are of interest in the context of hyperplane walks. See [12, 64, 52] for more on passing to

central and essential arrangements.)

Now if A = {Hi}mi=1 is a collection of hyperplanes in V = Rn and γ ∈ V \ A, then

each Hi partitions V into three subsets: H+
i = {open half-space containing γ}, H0

i = Hi,

and H−i = {open half-space not containing γ}. (Equivalently, each hyperplane can be

identified with the solutions to a linear equation Hi = H0
i = {x ∈ V : Lix = ci}, and

we can define the half-spaces by H+
i = {x ∈ V : Lix > ci}, H−i = {x ∈ V : Lix < ci}.

For central arrangements, ci = 0 for all i ∈ [m].) The set of faces of the arrangement,

F = F(A), consists of all nonempty intersections of the form

F = ∩mi=1H
σi(F )
i , σi(F ) ∈ {−, 0,+}.

41



Thus each face may be identified with its sign sequence

F ∼ σ(F ) = (σ1(F ), σ2(F ), ..., σm(F )).

The n-dimensional faces are called chambers, and the set of chambers is denoted by

C = C(A). These are the (convex) connected components of V \ A, and their sign

sequences satisfy σi(C) 6= 0 for all i ∈ [m]. Note that our method of orienting the

hyperplanes always guarantees the existence of a chamber with sign sequence (+,+, ...,+)

- namely, the chamber containing γ. We observe that except in the Boolean case (to be

discussed later), not all of the 3m possible sign sequences are realized by the faces of a

given arrangement.

The intersection poset associated with A, L = L(A), is defined as the collection of all

intersections of the form ∩i∈AHi, A ⊆ [m], ordered by reverse inclusion. (In the noncentral

case, we only consider nonempty intersections. Also, beware that some authors order L

by inclusion.) For U,W ∈ L, the join of U and W is U ∨W = U ∩W and the meet of U

and W is U ∧W = U +W , the smallest subspace containing U and W . The elements of

the intersection poset are referred to as flats. To avoid ambiguity in representation, we

will define the support set of a flat W ∈ L to be the set AW = {i ∈ [m] : W ⊆ Hi}, so that

W = ∩i∈AWHi. We include the following proposition as motivation for this definition.

Proposition 2.1.1. For any W,U ∈ L, W ≤ U if and only if AW ⊆ AU .

Proof. If AW ⊆ AU , then U = ∩i∈AUHi ⊆ ∩i∈AWHi = W , hence W ≤ U . On the other

hand, if W ≤ U , then U ⊆W , so for every Hi ∈ AW , we have U ⊆W ⊆ Hi, so Hi ∈ AU .

Therefore, W ≤ U implies that AW ⊆ AU as well.

42



Thus we see that ordering the flats by reverse inclusion is equivalent to ordering their

support sets by inclusion.

As A is assumed to be central, it can be shown that L is actually a (geometric) lattice

with top element 1̂ = ∩mi=1Hi and bottom element 0̂ = V , the empty intersection. The

Möbius function of L is defined recursively by

µ(W,W ) = 1,

µ(W,W ′) = −
∑

W≤U<W ′
µ(W,U) for W < W ′,

µ(W,W ′) = 0 for W �W ′.

(See chapter 5 in [1].) The Möbius function is involved in the formula for the multiplicities

of the eigenvalues of hyperplane walks and also in an upper bound on the distance to

stationarity after k steps. Moreover, we have the following famous theorem due to Thomas

Zaslavsky [71]:

Theorem 2.1.1 (Zaslavsky). Let A be a finite arrangement of hyperplanes in V = Rn

with chamber set C and intersection lattice L. Let µ be the Möbius function of L. Then

|C| =
∑
W∈L

|µ(V,W )| .

In addition to the partial order on flats defined above, there is a related partial order

on faces. For F,G ∈ F , we write G ≤ F if for each i ∈ [m], either σi(F ) = 0 or

σi(F ) = σi(G), in which case we say that F is a face of G. (As with the intersection

lattice, some authors reverse the inequalities in the definition of the face poset.) We

define the support set of a face F ∈ F by

AF = {i ∈ [m] : F ⊆ Hi} = {i ∈ [m] : σi(F ) = 0}
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and define the support of F by supp(F ) = ∩i∈AFHi ∈ L. Thus the support of a face

is the maximal element of the intersection lattice in which that face is contained. Note

that G ≤ F in F implies that supp(G) ≤ supp(F ) in L, but the converse is not true in

general. Similarly, if F ∈ F and W ∈ L, then F ⊆ W if and only if supp(F ) ≥ W . In

terms of support sets, we have Asupp(F ) = AF . Also, since the chambers are precisely

those faces which are not contained in any hyperplane, we see that F ∈ C if and only if

supp(F ) = V .

Two chambers are said to be adjacent if they share a common codimension 1 face,

and we can define the chamber graph to have vertices indexed by the chambers and edges

given by the adjacency relation. The geodesic distance on the chamber graph provides

a metric on C, and the distance between two chambers given by this metric is equal to

the minimum number of hyperplanes one crosses when traveling from one chamber to the

other [12].

There is a natural product on the faces of a hyperplane arrangement defined in terms

of sign sequences by

σi(FG) =


σi(F ), σi(F ) 6= 0

σi(G), σi(F ) = 0

.

The face product may be interpreted geometrically as follows: FG is the first face en-

countered after traveling a positive distance in a straight line from a point in F to a point

in G. It is routine to verify that this product makes F a semigroup. (Since we are dealing

with central arrangements, the face O = ∩mi=1Hi, which has sign sequence (0, ..., 0), is a

two sided identity with respect to this product, so the faces have a monoidal structure.)

In addition, it is clear that the chambers form a two-sided ideal in the face semigroup,
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so, in particular, FC ∈ C for all F ∈ F , C ∈ C. In fact, FC is the unique chamber

having F as a face which is closest to C in terms of the metric defined above [12]. It is

worth pointing out that, by construction, F is a face of FG for all G ∈ F , thus successive

(right) face multiplications tend to move one downwards in the face poset (i.e. towards

the chambers). Indeed, one may define the partial order on faces in terms of the face

product by saying that F is a face of G if and only if FG = G. The definition of the

face product also shows that F is idempotent (FF = F for all F ∈ F) and has the left

regular property: FGF = FG for all F,G ∈ F . An idempotent semigroup with the left

regular property is known as a left-regular band, and much of the analysis of hyperplane

arrangements and the random walks thereon can be extended easily to this more general

setting (see [14, 13, 62]).

Because much of the foregoing is difficult to visualize, even in dimensions 2 and 3,

we introduce an alternative description of the face semigroup: Recalling that each face

is uniquely determined by its sign sequence, we associate the faces in F with rows of m

colored tiles where the ith tile in the row corresponding to a face F is red if σi(F ) = +,

green if σi(F ) = −, and clear if σi(F ) = 0. The product FG corresponds to the row of tiles

one observes when stacking the row corresponding to F on top of the row corresponding

to G, keeping in mind that one can see through the clear tiles while the red and green tiles

are opaque. We will henceforth refer to this as the RCT (rows of colored tiles) description

of hyperplane walks. This interpretation is illustrated in the following diagram.
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A graphical representation for multiplying G ∼ (−,+,+,−, 0, 0) by F ∼ (+, 0,−, 0, 0,+)

to obtain FG ∼ (+,+,−,−, 0,+)

One final concept that we will need when describing the eigenvectors for hyperplane

walks is that of a subarrangement. Given a hyperplane arrangement A = {Hi}mi=1 and

a set B ⊆ [m], we can define a subarrangement B = {Hi}i∈B - that is, B is obtained

from A by restricting attention to a subset of the hyperplanes in A. In terms of the

face semigroup, this is equivalent to projecting the sign sequences of faces in A onto

{−, 0,+}|B| by only keeping track of the coordinates in B. Thus in the RCT descrip-

tion, we are just ignoring the tiles corresponding to hyperplanes which are not in our

subarrangement, perhaps by painting all such tiles black in every row. In the case where

B = AW for some W ∈ L, we denote the subarrangement by BW = {Hi : W ⊆ Hi}.

Similarly, when B = AF = Asupp(F ) for some F ∈ F , we denote the subarrangement

by BF = {Hi : F ⊆ Hi}. Observe that for U,U ′ ∈ L, U ≤ U ′ if and only if BU is a

subarrangement of BU ′ . The following proposition shows that the Möbius function of

the intersection lattice corresponding to such a subarrangement agrees with the Möbius

function of L on the flats of the subarrangement.
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Lemma 2.1.1. Given a hyperplane arrangement A = {Hi}mi=1 in V = Rn and a flat

W ∈ L, let BW be the subarrangement {Hi}Hi⊇W . Then LW , the intersection lattice of

BW , is isomorphic to the interval [V,W ]L ⊆ L. Thus for all U,U ′ ∈ LW , µW (U,U ′) =

µ(U,U ′) where µW and µ are the Möbius functions of L and LW , respectively.

Proof. We note first that LW ⊆ L by construction, so the definition of the intersection

lattices implies that U ≤ U ′ in LW if and only if U ′ ⊆ U if and only if U ≤ U ′ in L.

Because LW inherits the partial order on L, we will have LW ∼= [V,W ]L as long as LW

and [V,W ]L are equal as sets. To see that this is indeed the case, we observe that if

U ∈ LW , then U = ∩i∈SHi for some S ⊆ BW ⊆ [m], hence W = ∩i∈BWHi ⊆ U ⊆ V ,

so LW ⊆ [V,W ]L. Conversely, if U ′ ∈ [V,W ]L, then W ⊆ U ′, so U ′ ≤ W , hence

AU ′ ⊆ AW by Proposition 2.1.1, thus U ′ ∈ LW . Therefore, since the Möbius function is

defined recursively on intervals and LW ∼= [V,W ]L, the Möbius function of LW is just the

restriction of the Möbius function of L to the interval [V,W ]L, hence the two agree on

LW .

It is worth noting that for an arbitrary subarrangement B = {Hi}i∈B, it is not nec-

essarily true that the intersection lattice of B is isomorphic to an interval in L since one

may have flats in [V,∩i∈BHi] which cannot be expressed as intersections over a subset

of B. (If B is a proper subset of the support set of ∩i∈BHi, then there is a hyperplane

Hj /∈ B containing ∩i∈BHi which is in [V,∩i∈BHi], but not in the intersection lattice of

B.)

Subarrangements are formed by deleting hyperplanes from a given arrangement. A

related operation is that of restriction. Formally, given a flat W ∈ L(A), we can define
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the restricted arrangement BW = {H ∩W : H ∈ A\BW } in the ambient vector space W .

One can show that for any W ∈ L, the intersection lattice for BW is isomorphic to the

interval [W,
⋂
H∈AH]L in L(A) just as BW ∼= [V,W ]L. The proof of Zaslavsky’s theorem

is essentially a recursive argument based on the identity |C(A)| = |C(BH1)| +
∣∣C(BH1)

∣∣ -

the number of chambers in A is equal to the number of chambers in the arrangement BH1

formed by deleting H1 plus the number of chambers in BH1 which are cut into 2 pieces

by H1, the latter being equal to the number of chambers in the restriction to H1 [64].

Though subarrangements are central to our analysis of the eigenfunctions of hyperplane

chamber walks in chapter 3, we do not see a way to use the dual notion of restricted

arrangements to obtain analogous results.

2.2 Hyperplane Walks

In light of the semigroup structure on the faces of a hyperplane arrangement A = {Hi}mi=1,

it is obvious how to construct a random walk on F . Namely, given a probability measure

w on F and some initial face F0, we define X0 = F0 and Xk+1 = Fk+1Xk for all k ∈ N0

where F1, F2, ... are chosen independently from w. Then {Xk}∞k=0 is clearly a Markov

chain and the transition probabilities are given by

P (G,H) =
∑
F∈F:
FG=H

w(F )

for all G,H ∈ F . Because C is a left ideal in the face semigroup, we see that if X0 =

F0 ∈ C, then Xk ∈ C for all k. Consequently, we may restrict the state space to C without

changing the underlying dynamics. For various reasons which will be discussed later, we

will focus on random walks on the chambers of A in what follows.
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These hyperplane chamber walks were introduced by Pat Bidigare in his PhD thesis

[7] and subsequent investigations were soon carried out by Persi Diaconis and Ken Brown

[12] and by Bidigare, Phil Hanlon, and Dan Rockmore [8]. They are often referred to

as BHR walks after the latter authors. The main results for these Markov chains are

summarized in the following theorems [12, 8].

Theorem 2.2.1. Let A be an arrangement of hyperplanes in V = Rn with face poset

F and intersection poset L, and let w be a probability measure on F . Then the matrix

P (C,C ′) =
∑

FC=C′

w(F ), C,C ′ ∈ C, is diagonalizable over R, and for each W ∈ L, there

is an eigenvalue

λW =
∑
F∈F:
F⊆W

w(F )

occurring with multiplicity

mW = |µ(V,W )| = (−1)codim(W,V )µ(V,W )

where µ is the Möbius function of L and codim(W,V ) denotes the codimension of W in

V .

Note that Theorem 2.2.1 gives an alternate proof of Zaslavsky’s Theorem. Also,

despite the fact that hyperplane walks are not generally reversible, we see that all of the

eigenvalues of P are nonnegative real numbers. However, one should be aware that it

may be the case that λW1 = ... = λWl
= λ for distinct W1, ...,Wl ∈ L, in which case the

multiplicity of λ is mλ = mW1 + ...+mWl
.
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In addition to establishing diagonalizability and computing eigenvalues, the above

authors were able to determine a criterion for ergodicity, describe the stationary distribu-

tion, and upper-bound the rate of convergence (with respect to the total variation metric)

in terms of the eigenvalues. To state the results as succinctly as possible, we adopt the

following terminology: A probability measure w on F is called separating if it is not

concentrated on the faces of any Hi ∈ A. That is, for every i ∈ [m], there is some F ∈ F

such that σi(F ) 6= 0 and w(F ) > 0.

Theorem 2.2.2. Let A, F , C, w, and P be as in Theorem 2.2.1. Then

1. P has a unique stationary distribution π if and only if w is separating.

2. Assume that w is separating. Sample without replacement from w to obtain an

ordering F1, F2, ..., Fr of {F ∈ F : w(F ) > 0}. Then the product F1F2 · · ·Fr is a

chamber distributed according to π.

3. Still assuming that w is separating, and letting P kC be the distribution of the walk

started at C ∈ C after k steps, the total variation distance between P kC and π satisfies

∥∥∥P kC − π∥∥∥
TV
≤ −

∑
W>V

µ(V,W )λkW ≤
∑
H∈A

λkH .

Theorem 2.2.2 is the easier of the two to prove, so we will begin there. Brown

and Diaconis [12] establish the theorem by considering the stationary F-valued process

..., F−1, F0, F1, ... where each Fi is distributed according to w. They then argue that

the condition that w is separating guarantees that the infinite product F∞1 =
∏∞
i=1 Fi =

limk→∞ F1 · · ·Fk is almost surely constant and take π to be the distribution of F∞1 . Next,
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they show that for any C0 ∈ C, letting πk denote the distribution of Ck = F k1 C0 where

F k1 = F1 · · ·Fk, one has

‖πk − π‖TV ≤ P{F
k
1 6= F∞1 } = P{F1 · · ·Fk /∈ C} → 0 as k →∞.

Since Ck = F1 · · ·FkC0 =d F−k · · ·F−1C0 by shift-invariance of the stationary process,

this establishes the first two parts of the theorem up to some fairly trivial observations.

The third part follows by using Möbius inversion to write

P{F1 · · ·Fk /∈ C} = P{F1, ..., Fk ∈ Hi for some i ∈ [m]} = −
∑
W>V

µ(V,W )λkW .

The first two parts of the theorem can be deduced in a similar fashion by applying the

machinery from [27] to the infinite composite of the random mapping representation of

the chain. For the sake of variety and to highlight some of the more salient aspects of the

result, we now provide a different proof of Theorem 2.2.2 along with an equivalent upper

bound on distance to stationarity which is more computationally tractable.

To begin with, let w be a separating probability measure on F and consider the

Markov chain on C with transitions given by Xk = FkXk−1 where Fk is chosen from

w independent of F1, ..., Fk−1. Let W = {F[1], ..., F[r]} ⊆ F be an enumeration of the

support of w and write C′ = {F[σ(r)] · · ·F[σ(1)] : σ ∈ Sr}. We first observe that since w is

separating, C′ ⊆ C. This is easy to see in terms of the RCT description of the faces since

in this context the requirement that w is separating is equivalent to the statement that for

each tile position, there is some F ∈ W such that F has an opaque tile in that position.

As such, once all rows of tiles corresponding to the faces in W have been stacked on top

of one another, the entire row will be opaque regardless of the order in which they were
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stacked. Notice also that if Fk · · ·F1 ∈ C for some k ≥ 1, then Xk = Fk · · ·F1X0 ∈ C′.

This is because we can use the left-regularity property of F (FGF = FG) to delete all

but the last instance of any face occurring with multiplicity in the sequence F1, ..., Fk

to obtain Fil · · ·Fi1 = Fk · · ·F1 = Xk with the F ′ijs distinct, and then use the fact that

CF = C for all C ∈ C, F ∈ F to append the remaining faces (in any order) at the

beginning, yielding Xk = Fil · · ·Fi1Fj1 · · ·Fjr−l ∈ C′.

Now for any C ∈ C′, F ∈ W, we have C = F[σ(r)] · · ·F[σ(1)] for some σ ∈ Sr and

F = F[σ(i)] for some i ∈ {1, ..., r}. If i = r, then

FC = F[σ(r)]F[σ(r)] · · ·F[σ(1)] = F[σ(r)] · · ·F[σ(1)] ∈ C′

by idempotence, and if i 6= r, then

FC = F[σ(i)]F[σ(r)] · · ·F[σ(i)] · · ·F[σ(1)] = F[σ(i)]F[σ(r)] · · ·F[σ(i+1)]F[σ(i−1)] · · ·F[σ(1)] ∈ C′

by left-regularity. Thus, if Xk ∈ C′, then Xn ∈ C′ for all n ≥ k. Also, for any C,D ∈ C′

and any n ∈ N0, k ≥ r, if D = F[τ(r)] · · ·F[τ(1)], then

P{Xn+k = D |Xn = C } ≥ P{Fn+k = F[τ(r)], ..., Fn+k−r+1 = F[τ(1)]} > 0

because Fn+k = F[τ(r)], ..., Fn+k−r+1 = F[τ(1)] implies

Fn+k · · ·Fn+k−r+1Fn+k−r · · ·Fn+1C = DFn+k−r · · ·Fn+1C = D

as D ∈ C′ ⊆ C and BF = B for all B ∈ C, F ∈ F). Consequently, the Markov chain on

C′ is irreducible and aperiodic, so there exists a unique and strictly positive stationary

distribution π̃ such that limk→∞ P{Xn+k = D |Xn = C } = π̃(D) for all C,D ∈ C′.
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We can extend π̃ to all of C by defining π(C) = π̃(C)1{C ∈ C′}, and we claim that

π is the unique stationary distribution for the random walk on C. To see that this is

the case, we construct the following coupling: Let X0 ∼ µ, Y0 ∼ π and recursively

define Xk = FkXk−1, Yk = FkYk−1 where F1, F2, ... are i.i.d. picks from w. Then for all

k ∈ N, Xk ∼ P kµ by definition and Yk ∼ π since Y0 ∈ C′ a.s. and π̃ = π|C′ is stationary.

Consequently, it follows from the coupling characterization of the total variation distance

that
∥∥P kµ − π∥∥TV ≤ P{Xk 6= Yk}. Setting T = min{k ∈ N : Fk · · ·F1 ∈ C}, we have

Xk = Fk · · ·F1X0 = Fk · · ·F1 = Fk · · ·F1Y0 = Yk

whenever k ≥ T , hence
∥∥P kµ − π∥∥TV ≤ P{T > k}.

Now

P{T > k} = P{Fk · · ·F1 /∈ C} = P{F1, ..., Fk ∈ Hi for some i ∈ [m]}

≤
m∑
i=1

P{F1, ..., Fk ∈ Hi},

and for each i ∈ [m],

P{F1, ..., Fk ∈ Hi} = P{F1 ∈ Hi} · · ·P{Fk ∈ Hi} = P{F1 ∈ Hi}k

where

P{F1 ∈ Hi} =
∑
F∈W:
F⊆Hi

w(F ) ≤ 1− min
F∈W

w(F )

since w is separating. Therefore,

∥∥∥P kµ − π∥∥∥
TV
≤ P{T > k} ≤

m∑
i=1

P{F1, ..., Fk ∈ Hi} ≤ m
(

1− min
F∈W

w(F )

)k
→ 0
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as k → ∞, so the random walk has a unique stationary distribution whenever w is

separating. If w is not separating, then there exists some Hi such that F ⊆ Hi for

all F ∈ W. Thus when X0 = (+, ...,+), we have σi(Xk) = + for all k, and when

X0 = (−, ...,−),we have σi(Xk) = − for all k so the condition that w is separating

is necessary as well. (Both of the preceding sign sequences correspond to faces in any

arrangement by virtue of our method of orienting the hyperplanes.)

Also, note that the proof of the first part of Theorem 2.2.2 shows that FT · · ·F1 =

FT · · ·F1X0 ∼ π. The interpretation is thus “Sample without replacement from w until

the product FT · · ·F1 is a chamber. This chamber is distributed according to π.” More-

over, the RCT description shows that FT · · ·F1 ∈ C if and only if Fσ(T ) · · ·Fσ(1) ∈ C

for all σ ∈ ST (since the opacity of the stack does not depend on the ordering of the

rows), so it is equivalent say “Sample faces from w until F1 · · ·FT ∈ C. Then FT · · ·F1

is distributed according to π.” Because the left regular property allows us to delete all

but the last occurrences of any faces in the sequence F1, ..., FT without changing the

value of the product, it is also equivalent to sample without replacement as this is the

same as sampling with replacement and then deleting repeats. At the other extreme,

rather than just eliminating the face just sampled at each stage, we may, upon having

already chosen F1, ..., Fi, remove all faces contained in the support of F1 · · ·Fi before

picking Fi+1 since F ⊆ supp(F1 · · ·Fi) implies that supp(F ) ⊆ supp(F1 · · ·Fi) and thus

F1 · · ·Fi = F1 · · ·FiF . This follows from the same argument as before, and both of these

alternate descriptions of π are given in [12]. These observations combine to give the

second part of Theorem 3 (and several equivalent formulations as well).
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In particular, the description of π given in Theorem 2.2.2 shows that we may write

π(C) =
∑
σ∈Sr :

F[σ(1)]···F[σ(r)]=C

∏
1≤j≤r

w(F[σ(j)])

1−
∑

i<j w(F[σ(i)])
.

Now observe that

∑
C∈C

π(C)P (C,D) =
∑
C∈C

 ∑
σ∈Sr :

F[σ(1)]···F[σ(r)]=C

∏
1≤j≤r

w(F[σ(j)])

1−
∑

i<j w(F[σ(i)])


 ∑

F∈W:
FC=D

w(F )


=
∑
C∈C

∑
σ∈Sr :

F[σ(1)]···F[σ(r)]=C

∑
F∈W:

FF[σ(1)]···F[σ(r)]=D

w(F )
∏

1≤j≤r

w(F[σ(j)])

1−
∑

i<j w(F[σ(i)])

=
∑
σ∈Sr

∑
F∈W:

FF[σ(1)]···F[σ(r)]=D

w(F )
∏

1≤j≤r

w(F[σ(j)])

1−
∑

i<j w(F[σ(i)])

=
∑
F∈W

w(F )
∑
σ∈Sr :

FF[σ(1)]···F[σ(r)]=D

∏
1≤j≤r

w(F[σ(j)])

1−
∑

i<j w(F[σ(i)])
,

and for each σ ∈ Sr, F ∈ W, we have that FF[σ(1)] · · ·F[σ(r)] = F[τ(1)] · · ·F[τ(r)] for some

τ ∈ Sr uniquely determined by F and σ (by the same argument that showed X0 ∈ C′

implies Xk ∈ C′ for all k ∈ N). Consequently,

∑
C∈C

π(C)P (C,D) =
∑
F∈W

w(F )
∑
σ∈Sr :

FF[σ(1)]···F[σ(r)]=D

∏
1≤j≤r

w(F[σ(j)])

1−
∑

i<j w(F[σ(i)])

=

(∑
F∈W

w(F )

) ∑
τ∈Sr :

F[τ(1)]···F[τ(r)]=D

∏
1≤j≤r

w(F[σ(j)])

1−
∑

i<j w(F[σ(i)])


=

∑
τ∈Sr :

F[τ(1)]···F[τ(r)]=D

∏
1≤j≤r

w(F[σ(j)])

1−
∑

i<j w(F[σ(i)])
= π(D),

providing another proof that π is stationary.

55



At this point, it remains only to establish the third part of Theorem 2.2.2. To this

end, recall that

∥∥∥P kµ − π∥∥∥
TV
≤ P{T > k} = P{Fk · · ·F1 /∈ C} = P{supp(Fk · · ·F1) 6= V }

= P{supp(Fk · · ·F1) > V } =
∑
W>V

P{supp(Fk · · ·F1) = W}.

Now for each W ∈ L, set

λW =
∑
F∈F:
F⊆W

w(F ).

These are the purported eigenvalues from Theorem 2.2.1. By definition, we have

λW =
∑
F∈F:
F⊆W

w(F ) = P{supp(Fi) ≥W},

so

λkW = P{supp(Fk) ≥W} · · ·P{supp(F1) ≥W} = P{supp(Fk), ..., supp(F1) ≥W}

= P{supp(Fk · · ·F1) ≥W} =
∑
U≥W

P{supp(Fk · · ·F1) = U}.

As such, Möbius inversion (see [1]) gives

P{supp(Fk · · ·F1) = W} =
∑
U≥W

λkUµ(W,U),

hence

∥∥∥P kµ − π∥∥∥
TV
≤
∑
W>V

P{supp(Fk · · ·F1) = W} =
∑
W>V

∑
U≥W

λkUµ(W,U)

=
∑
U>V

λkU
∑

U≥W>V

µ(W,U) =
∑
U>V

λkU (−µ(V,U))

= −
∑
U>V

λkUµ(V,U),
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which is the third part of Theorem 2.2.2. Note that since the argument involves inversion

from above, it is important that we are working with a central arrangement so that L

has top element 1̂ = ∩mi=1Hi.

Though it is nice to have an upper bound on variation distance in terms of the

eigenvalues of the transition matrix, the Möbius function for the intersection lattice of

an arbitrary arrangement is not easy to compute, making the bound fairly unwieldy. Of

course, we could use the simpler bound

∥∥∥P kµ − π∥∥∥
TV
≤ P{Fk · · ·F1 /∈ C} = P{F1, ..., Fk ∈ Hi for some i ∈ [m]}

≤
m∑
i=1

P{F1, ..., Fk ∈ Hi} =

m∑
i=1

P{F1 ∈ Hi}k

=
m∑
i=1

λkHi

which is equivalent to truncating the alternating sum −
∑

U>V λ
k
Uµ(V,U) after the atoms

of L (i.e. the hyperplanes), but then we lose the advantage of all the cancellation. One

way to remedy this problem is to employ the same basic reasoning in a more familiar

lattice. To wit, for each S ⊆ [m], define

βs =
∑
F∈F:

σi(F )=0 ∀i∈S

w(F )

and for each i ∈ [m], set Bk
i = {F1, ..., Fk ∈ Hi}. Then inclusion-exclusion yields

∥∥∥P kµ − π∥∥∥
TV
≤ P{F1, ..., Fk ∈ Hi for some i ∈ [m]} = P

{
∪mi=1B

k
i

}
=

m∑
i=1

P{Bk
i } −

∑
1≤i<j≤m

P{Bk
i ∩Bk

j }+ ...− (−1)mP
{
∩mi=1B

k
i

}
.
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Since

P{Bk
i1 ∩ · · · ∩B

k
ir} = P{F1, ..., Fk ⊆ ∩i∈{i1,...,ir}Hi}

= P{F1 ⊆ ∩i∈{i1,...,ir}Hi} · · ·P{Fk ⊆ ∩i∈{i1,...,ir}Hi}

= P{F1 ⊆ ∩i∈{i1,...,ir}Hi}k = βk{i1,...,ir},

we have

Theorem 2.2.3. In the setting of Theorem 2.2.2, we have the equivalent bound

∥∥∥P kµ − π∥∥∥
TV
≤ −

∑
S⊆[m]:
S 6=Ø

(−1)|s|βkS

where

βS =
∑
F∈F:

σi(F )=0 ∀i∈S

w(F ).

Of course, inclusion-exclusion is Möbius inversion on the lattice of subsets, so both

arguments have the same underlying structure. In fact, the two formulations are equiv-

alent when A is a Boolean arrangement (to be discussed in the next section). In some

sense, the latter bound can be seen as embedding the hyperplane walk into a Boolean

arrangement and carrying out the computations in this simpler setting. It is also worth

pointing out that the λ′W s are a subset of the β′Ss, and the two are equivalent if one

ignores multiplicity. When S is a singleton, we have β{i} = λHi , and when S = AW , we

have βAW = λW .

Finally, observe that the proof of Theorem 2.2.2 carries through unchanged if we allow

the state space to consist of all of F rather than just C. In particular, it is informative

to consider the random walk on F with initial state X0 = O = ∩mi=1Hi. Recalling that
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the conditional distribution of Xk = Fk · · ·F1 given that Fk · · ·F1 ∈ C is π, if we let P kO

denote the distribution of Xk where X0 = O, the for all C ∈ C,

P k0 (C) = P{Xk = C} = P{Xk = C,Xk ∈ C} = P{Xk = C |Xk ∈ C }P{Xk ∈ C}

= π(C)P{Xk ∈ C} ≤ π(C).

(We have tacitly assumed that P{Xk ∈ C} > 0, but the conclusion holds trivially if

this is not the case.) Since π is supported on C′ ⊆ C, it follows from the extreme event

characterization of total variation that

∥∥∥P k0 − π∥∥∥
TV

=
∑
F∈F:

π(F )≥Pk0 (F )

[
π(F )− P k0 (F )

]
=
∑
C∈C

[
π(C)− P k0 (C)

]

= 1−
∑
C∈C

P k0 (C) = 1− P k0 (C) = P k0 (CC) = P{Fk · · ·F1 /∈ C},

thus the upper bound
∥∥P kµ − π∥∥TV ≤ P{T > k} = P{Fk · · ·F1 /∈ C} is tight in the case of

random walk on the faces of a hyperplane arrangement with initial state X0 = O. (This

also implies that the maximal total variation distance
∥∥P k − π∥∥

TV ∗
is given by the upper

bounds in Theorems 2.2.2 and 2.2.3 in the case of hyperplane face walks.) Moreover,

since
∥∥P kO − π∥∥TV = P{Fk · · ·F1 /∈ C}, the Bonferroni inequalities give

m∑
i=1

βk{i} −
∑

1≤i<j≤m
βk{i,j} ≤

∥∥∥P kO − π∥∥∥
TV
≤

m∑
i=1

βk{i}.

For walks started at any other face, we can still use Theorem 2.2.3 and the Bonferroni in-

equalities to get upper bounds on total variation distance which are better than the bound
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in terms only of the eigenvalues corresponding to hyperplanes and are not significantly

harder to compute in principle. For example, we have

∥∥P rµ − π∥∥TV ≤ m∑
i=1

βr{i} −
∑

1≤i<j≤m
βr{i,j} +

∑
1≤i<j<k≤m

βr{i,j,k}.

Though it is nice to have an exact formula for the total variation distance, it is not

generally that useful to consider walks on the faces. This is largely because the chambers

typically have a different combinatorial description than the rest of the faces and the

stationary distribution will be concentrated on C whenever the chain is ergodic. Also,

though Theorems 2.2.2 and 2.2.3 hold in the case of face walks, it turns out that the

proofs of Theorem 2.3.1 do not carry over since F is not a meet semilattice.

Having dispensed with Theorem 2.2.2, we now turn our attention to Theorem 2.2.1.

The idea here is to consider the vector space RF of formal linear combinations of elements

in F - that is, the vectors are of the form
∑

F∈F aFF , aF ∈ R. Extending the semigroup

product on F yields the bilinear product(∑
F∈F

aFF

)(∑
F∈F

bFF

)
=

(∑
F∈F

cFF

)

where

cF =
∑

GH=F

aGbH

is the standard convolution product. Thus we can view RF as an R-algebra. If I is an

ideal of F , then the action of F on I makes the free vector space RI an RF-module.

(This holds for any ideal, including I = F , but we will primarily be interested the case
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I = C, and so will work in this setting henceforth.) Given a probability measure w on F ,

we can consider the element

Tw =
∑
F∈F

w(F )F ∈ RF

which acts as an operator on RC. That is, given α =
∑

C∈C αCC ∈ RC, we have

Tw(α) =

(∑
F∈F

w(F )F

)(∑
C∈C

αCC

)
=
∑
C∈C

∑
F∈F

w(F )αCFC =
∑
B∈C

γBB

where

γB =
∑
C∈C

αC
∑
F∈F:
FC=B

w(F ) =
∑
C∈C

αCP (C,B).

Consequently, if we think of the elements of RC as row vectors, then Tw acts as right

multiplication by the transition matrix P . Thus P is diagonalizable if Tw is diagonalizable

and the eigenvectors of Tw on RC correspond to the left eigenvectors of P , giving the

spectrum of P provided that the spectrum of Tw is known [12, 13].

Brown and Diaconis use tools from topology to show that Tw is diagonalizable and

to compute its eigenvalues and their multiplicities [12]. In the more general setting of

left-regular bands, Brown gives a purely algebraic derivation of the eigenvalues using

semigroup representation theory and shows that the subalgebra generated by Tw is iso-

morphic to a direct product of copies of R so that R[Tw] is semisimple, and thus the action

of Tw is diagonalizable in every RF-module [13]. The paper [14] gives a nice, readable

overview of this argument. Using ideas from [12] and [13], Graham Denham was able to

use combinatorial Heaviside functions to describe the left eigenspaces of the transition

matrices of hyperplane chamber walks in terms of flags in the intersection lattices [19],

61



but it seems difficult to use these ideas to explicitly write down the eigenvectors in gen-

eral. In the setting of left-regular bands, Franco Saliola was able to express the analog of

Tw as a linear combination of primitive orthogonal idempotents in the semigroup algebra

to obtain similar results for left eigenspaces of random walks on LRBs and he used this

to deduce diagonalizability [61, 62].

These algebraic analyses of the face semigroup algebra are fascinating in their own

right (see [61] for further remarkable properties of kF), but as the author has nothing

substantial to add to these results and the focus of this thesis is probabilistic, the reader is

referred to the above references for more details. Before moving on though, we provide a

purely combinatorial derivation of the eigenvalues and their multiplicities due to Christos

Athanasiadis and Persi Diaconis in an article which foreshadows some of our results

concerning the right eigenvectors of hyperplane chamber walks [5].

To begin, we note that if A ∈Mn(C) has eigenvalues λ1, ..., λn, then Tr(Ak) = λk1+...+

λkn for all k ∈ N - this is clearly true for diagonalizable matrices and since the set of n×n

diagonalizable matrices is dense in Mn(C), the continuity of the trace function implies

the result. Conversely, if Tr(Ak) = λk1 + ... + λkn for some A ∈ Mn(C), then it follows

from Newton’s identities (see [42]) that λ1, ..., λn are the eigenvalues of A. Consequently,

it suffices to prove that

Tr(P k) =
∑
W∈L

|µ(V,W )|λkW

for all k ∈ N.

Now observe that for any F ∈ F , the set {C ∈ C : FC = C} is in one-to-one

correspondence with C(BF ), the set of chambers in the subarrangement BF = {Hi : F ⊆
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Hi}. This is easy to see in terms of the RCT description of the faces: Given a collection of

rows of colored tiles representing F , a representation of the faces of the subarrangement

BF can be obtained by painting the ith tile in each row black if σi(F ) 6= 0 and then

throwing out any duplicates. The chambers of BF are represented by the remaining rows

which have no clear tiles. The chambers in {C ∈ C : FC = C} correspond precisely to the

rows of tiles obtained by painting the black tiles in these rows the corresponding colors of

F - that is, if σi(F ) = +, change the ith tiles from black to red, and if σj(F ) = −, change

the jth tiles from black to green. The associated map from C(BF ) to {C ∈ C : FC = C}

is well-defined since every row of tiles in C(BF ) is sent to a unique row in C which has

the same color as F in the positions for which the F row is opaque, it is injective since

we threw out duplicates, and it is surjective since every row in {C ∈ C : FC = C} is the

image of the row in C(BF ) obtained by painting the ith tile black whenever σi(F ) 6= 0.

Consequently, it follows from Theorem 2.1.1 and Lemma 2.1.1 that

|{C ∈ C : FC = C}| = |C(BF )| =
∑
W∈LF

|µLF (V,W )| =
∑
W∈L:
F⊆W

|µ(V,W )| .

Therefore, by definition of the random walk, we have

Tr(P k) =
∑
C∈C

∑
(F1,...,Fk)∈Fk:
Fk···F1C=C

w(F1) · · ·w(Fk) =
∑
C∈C

∑
F∈F:
FC=C

∑
(F1,...,Fk)∈Fk:
Fk···F1=F

w(F1) · · ·w(Fk)

=
∑
F∈F
|{C ∈ C : FC = C}|

∑
(F1,...,Fk)∈Fk:
Fk···F1=F

w(F1) · · ·w(Fk)

=
∑
F∈F

∑
W∈L:
F⊆W

|µ(V,W )|
∑

(F1,...,Fk)∈Fk:
Fk···F1=F

w(F1) · · ·w(Fk)
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=
∑
W∈L

|µ(V,W )|
∑

(F1,...,Fk)∈Fk:
Fk···F1⊆W

w(F1) · · ·w(Fk)

=
∑
W∈L

|µ(V,W )|
∑

(F1,...,Fk)∈Fk:
F1,...,Fk⊆W

w(F1) · · ·w(Fk)

=
∑
W∈L

|µ(V,W )|

∑
F∈F:
F⊆W

w(F )


k

=
∑
W∈L

|µ(V,W )|λkW ,

which establishes the result.

2.3 Examples

In order to motivate the study of hyperplane walks and illustrate the concepts mentioned

above, we will examine several interesting Markov chains which can be modeled in terms

of random walks on the Boolean, braid, and dihedral arrangements, respectively. Most

of the examples considered here (or analogues thereof) can be found in [12].

We remark that the three arrangements considered in this section are each examples of

what are known as reflection arrangements. An element s ∈ GL(V ) is called a reflection

if it has finite order and its fixed point set is a hyperplane Hs (called the reflecting

hyperplane of s), and a finite group G ≤ GL(V ) is called a finite reflection group (or

finite Coxeter group) if it is generated by reflections. The set of reflecting hyperplanes

of a finite reflection group G is known as the reflection arrangement of G [52]. (We are

considering isomorphic groups to be equivalent, so a reflection group is a group which is

isomorphic to a subgroup of some general linear group which is generated by reflections.)

If A is the reflection arrangement of a finite reflection group G, then the chambers of A

correspond to the elements of G and the faces of A correspond to left cosets of parabolic
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subgroups of G [38, 43]. As such, there is a natural action of G on C(A) and F(A),

respectively, and G acts simply transitively on C. Consequently, we can view hyperplane

chamber walks as Markov chains on G, though they do not represent random walks on G

in the standard sense of the term. However, if the face measure w is invariant under the

action of G on F , then the chamber walk corresponds to the random walk on G generated

by the measure

Q(g) =
∑
F∈F :
F ·id=g

w(F )

(where g is regarded as a group element on the left-hand side and as the corresponding

chamber on the right-hand side, and similarly for id) [12]. The Boolean, braid, and

dihedral arrangements are reflection arrangements corresponding to the Boolean group

(Z/2Z)n, the symmetric group Sn, and the dihedral group D2n, respectively.

2.3.1 Boolean Arrangement

The Boolean arrangement in Rn is the collection of coordinate hyperplanes Bn = {Hi}ni=1

where Hi = {x ∈ Rn : xi = 0}. The chamber set of this arrangement consists of the

2n orthants in Rn (which may be identified with the set {+,−}n or the vertices of the

n-dimensional hypercube), and the set of faces correspond to the set of all 3n possible sign

sequences {−, 0,+}n. The fact that one need not worry whether a given sign sequence

corresponds to a face and that the chambers may be identified with such familiar objects

makes the Boolean arrangement one of the simplest arrangements to think about.

It is also in some sense the most general class of hyperplane arrangements since every

hyperplane walk can be embedded into a walk on a Boolean arrangement. Specifically,
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given a hyperplane arrangement A = {Hi}mi=1 in Rn, n arbitrary, and a measure w on the

face semigroup F(A), one can construct a walk on the arrangement Bm = {x ∈ Rm : xi =

0}mi=1 by defining w̃(F̃ ) = w(F ) if F̃ ∈ F(Bm) has the same sign sequence as F ∈ F(A)

and w̃(F̃ ) = 0 if there is no F ∈ F(A) with the same sign sequence as F̃ . Because F(A) is

a semigroup, we see that this induced walk on Bm is identical to the walk on A provided

that we begin at some chamber in C(Bm) whose sign sequence corresponds to an element

of C(A). If w is separating as a measure on F(A), then C(A) ⊆ C(Bm) is an absorbing

set regardless of the initial state. This means that the transition matrix for the walk on

the larger state space C(Bm) can be written as

P̃ =


P 0

Q R


where P is the transition matrix for the original walk. One advantage of this perspective

is that the spectrum of P is contained in the spectrum of P̃ and it turns out that one can

analyze walks on a Boolean arrangement using much more elementary machinery than

is required for a walk on an arbitrary arrangement. Moreover, this procedure applies

even when the original arrangement is noncentral, so one can answer many questions

about walks on noncentral (or nonessential) arrangements by embedding them in to the

appropriate Boolean arrangement. This notion of enlarging the state space also comes

into play when considering walks on the faces of an arrangement and involves many of

the same ideas.

A concrete example of a Markov chain which can be modeled in terms of a random

walk on the Boolean arrangement Bn = {x ∈ Rn : xi = 0}ni=1 is given by defining

w(F ) = 1
2n if the sign sequence of F contains exactly n−1 zeros and w(F ) = 0 otherwise.
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Thus the walk evolves by picking a coordinate of x ∈ {±1}n at random and then flipping a

fair coin to decide whether to set that coordinate to 1 or −1. This is just the lazy nearest-

neighbor walk on the hypercube, which is closely related to the Ehrenfest urn model [48].

When we sample without replacement from the support of w to obtain F1, ..., F2n, we

see that the chamber F1 · · ·F2n is distributed according to the uniform distribution on

{±1}n. Because the intersection lattice L(Bn) is isomorphic to the lattice of subsets of [n]

with W ∈ L(Bn) corresponding to the set sW = {i ∈ [n] : xi = 0 on W}, it follows from

Theorem 2.2.1 that each subset s ⊆ [n] with cardinality |s| = k contributes an eigenvalue

λW =
∑
F⊆W

w(F ) = 2(n− k)
1

2n
= 1− k

n

of multiplicity mW = |µ(V,W )| =
∣∣(−1)k

∣∣ = 1 (as the Möbius function on the intersection

lattice agrees with the Möbius function on the subset lattice evaluated at the correspond-

ing subset). Because there are
(
n
k

)
=
(
n

n−k
)

subsets of [n] of size k, this agrees with the

classical eigenvalue result due to Mark Kac. The upper bound from Theorem 2.2.2 gives

∥∥∥P lC − π∥∥∥
TV
≤
∑
H∈A

λlH = n(1− 1

n
)l,

hence n log(n) + cn steps suffice to make the total variation distance less than e−c. It is

known that the correct bound is 1
2n log(n) + cn, so this bound is good but not perfect

[12].

Another way to conceive of random walks on the chambers of Boolean arrangements

is in terms of conquering territories [12]. The idea here is that each C ∈ C ∼ x ∈ {+,−}n

may be regarded as a landscape consisting of n sites, each of which can be in one of two

states, “+” or “−”. The action of a face F on C corresponds to changing the state of site
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i to “+” if σi(F ) = +, to “−” if σi(F ) = −, and leaving the state as is if σi(F ) = 0. Thus

we can think of the random walk as modeling two opposing forces engaged in successive

campaigns for control of the various sites. For example, a random walk on B5 corresponds

to an ongoing war over a region divided into five sites. If the current state of affairs is

Xi ∼ (+,+,−,+,−) (so that “+” controls sites 1, 2, and 4, and “−” controls sites 3 and

5) and the result of campaign i + 1 is Fi+1 ∼ (−,+, 0, 0,+) (in which battles occur at

sites 1, 2, and 5 with “+” the victor in sites 2 and 5 and “−” winning at site 1), then

the new division of territories is Xi+1 = Fi+1Xi ∼ (−,+,−,+,+). Example 3 in section

3B of [12] presents a simplified model of this setup in which the respective forces attack

only from the left or right so that the face measure is supported on those F ∈ F such

that for some 1 ≤ j ≤ n, σi(F ) = + for i = 1, ..., j and σi(F ) = − for i = j + 1, ..., n. (A

similar scenario arises if the face measure is supported on those F ∈ F such that there

exist 1 ≤ j ≤ k ≤ n with σi(F ) = + for i = 1, ..., j, σi(F ) = − for i = j + 1, ..., k− 1, and

σi(F ) = − for i = k + 1, ..., n.)

We will consider the following generalization of this militaristic model. Consider two

forces battling over a region which is divided into territories T1, ..., Tn. Each territory has

independent battle propensity bi = P{Ti is involved in a battle}, and outcome probabili-

ties

pS(i) = P{+ wins a battle at Ti|battles occur at sites in S},

qS(i) = P{− wins a battle at Ti|battles occur at sites in S} = 1− pS(i)
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for S ⊆ [n]. The corresponding hyperplane walk is given by assigning face probabilities

w(F ) =
∏
i∈AF

(1− bi)
∏
j /∈AF

bi

[
pACF

(j)1{+}(σj(F )) + qACF
(j)1{−}(σj(F ))

]
where AF = {i ∈ [n] : σi(F ) = 0} is the support set of F . Thus, when n = 5, the

probability of a campaign resulting in F ∼ (0,+,−, 0,+) is given by

w(F ) = (1− b1)b2p{2,3,5}(2)b3q{2,3,5}(3)(1− b4)b5p{2,3,5}(5).

Now each W ∈ L(Bn) corresponds to its support set AW ⊆ [n] and thus, by Theorem

2.2.1, contributes an eigenvalue

λW =
∑
F⊆W

w(F ) =
∑
F∈F:

σi(F )=0 ∀ i∈AW

w(F ) =
∏
i∈AW

(1− bi)

of multiplicity mW = |µ(V,W )| = 1. In particular, the eigenvalues, and thus the upper

bounds on distance to stationarity from Theorem 2.2.2, do not depend on the outcome

probabilities pS(1), ..., pS(n). Letting b∗ = mini∈[n] bi, the crude upper bound in Theorem

2.2.2 gives

∥∥∥P lC − π∥∥∥
TV
≤

n∑
i=1

(1− bi)l ≤ n(1− b∗)l ≤ ne−lb∗ ,

so that l ≥ b−1
∗ (log(n) + c) implies

∥∥P lC − π∥∥TV ≤ e−c for all c > 0.

Observe that this example may also be modeled as a generalized product chain on

{+,−}n. Specifically, for each i ∈ [n], S ⊆ [n], define

P
(S)
i =

 pS(i) qS(i)

pS(i) qS(i)

 , Q(S) =
∏
i∈S

bi
∏
j /∈S

(1− bj).
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Then the transition probabilities are

P (x, y) =
∑
S⊆[n]

Q(S)
∏
i∈S

P
(S)
i (xi, yi)

∏
j /∈S

1{yj = xj}.

However, unless the parameters pS(i) are independent of S for each i (that is, the out-

come probabilities do not depend on where the battles are being fought), the collections

{P (S)
i }S⊆[n] do not have the same eigenvectors, so the methods of subsection 1.3.2 do

not apply (though we can still recover some of the eigenfunctions using techniques to be

introduced in the following chapter). If pS(i) = pi for all i ∈ [n], S ⊆ [n], then each

P
(S)
i = Pi =

[
pi 1−pi
pi 1−pi

]
has eigenvalues 1 and 0 corresponding to right eigenvectors [ 1

1 ]

and
[
pi−1
pi

]
and it follows from Theorem 1.3.3 that P has eigenvalues

∑
S⊆[n]

∏
i∈S

bi
∏
j /∈S

(1− bj)
∏
i∈S

zi

as z ranges over Zn2 . Thus for each z ∈ Zn2 , letting Sz = {i ∈ [n] : zi = 1}, we see that

the corresponding eigenvalue is

∑
S⊆Sz

∏
i∈S

bi
∏
j /∈S

(1− bj) =
∏
j /∈Sz

(1− bj).

This agrees with the derivation in terms of the theory of random walks on hyperplane ar-

rangements, but Theorem 1.3.3 also gives every eigenfunction (in terms of tensor products

of the component eigenfunctions) as well. Specifically, the eigenvalue λW =
∏
i∈AW (1−bi)

corresponds to the right eigenfunction defined by φW (C) =
∏
i∈AW [pi−1{+}(σi(C))]. The

left eigenfunctions can be computed similarly.

A variation on the above model would be to allow for battles to end in a draw, in

which case the state of the corresponding territory remains unchanged. This is equivalent
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to saying that the current occupant of a site has an advantage in battles over that site.

To make this concrete, we set

pS(i) = P{+ wins a battle at Ti|battles occur at sites in S},

qS(i) = P{− wins a battle at Ti|battles occur at sites in S},

rS(i) = P{The battle at Ti ends in a draw|battles occur at sites in S}

= 1− pS(i)− qS(i)

for each i ∈ [n], S ⊆ [n] and define the face measure w by

w(F ) =
∑
S⊆AF

∏
i∈S

(1− bi)
∏

j∈AF \S

bjrSC (j)

×
∏
k∈ACF

bk
[
pSC (k)1{+}(σk(F )) + qSC (k)1{−}(σk(F ))

]
.

In this case, Theorem 2.2.1 implies that each W ∈ L(Bn) contributes an eigenvalue

λW =
∑
F⊆W

w(F ) =
∑
F∈F:

σi(F )=0 ∀ i∈AW

w(F ) =
∑

S⊆AW

∏
i∈S

(1− bi)
∏

j∈AW \S

bjrSC (j)

of multiplicity mW = |µ(V,W )| = 1. We can also represent this as a product chain by

taking

P
(S)
i =

 1− qS(i) qS(i)

pS(i) 1− pS(i)

 , Q(S) =
∏
i∈S

bi
∏
j /∈S

(1− bj)

for each i ∈ [n], S ⊆ [n]. Then the transition probabilities are

P (x, y) =
∑
S⊆[n]

Q(S)
∏
i∈S

P
(S)
i (xi, yi)

∏
j /∈S

1{yj = xj}.
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If we suppose that the two sides are evenly matched in the sense that pS(i) = qS(i) for

all i ∈ [n], S ⊆ [n], then the component kernels are given by

P
(S)
i =

 1− pS(i) pS(i)

pS(i) 1− pS(i)

 =

 1 1

1 −1


 1 0

0 1− 2pS(i)


 1 1

1 −1


−1

=

 1 1

1 −1


 1 0

0 rS(i)


 1 1

1 −1


−1

.

Because {P (S)
i }S⊆[n] is simultaneously diagonalizable, the argument from Theorem 1.3.3

shows that the eigenfunctions of the product chain are given by the tensor products of

the component eigenfunctions, φ
(0)
i (±) = 1 and φ

(1)
i (±) = ±1.

These military models are primarily interesting because they show that one can some-

times model hyperplane walks as product chains and vice versa. When viewed as product

chains, one may sometimes be able to extract all of the eigenfunctions using Theorem

1.3.3. Conversely, while it may be difficult to compute the spectrum of some generalized

product chains using Theorem 1.3.3, if they can be modeled as hyperplane walks, then

the task may be much simpler.

Before moving on to other types of arrangements, we remark that a wide variety of

coupon collecting problems can be modeled as random walks on Boolean arrangements.

The setup here is that we are trying to obtain a complete set of coupons {c1, ..., cN} by

successively choosing books of coupons with various probabilities. Suppose that there are

72



m different types of books Bk = {ci1 , ..., cink}, k ∈ [m], and the probability of choosing

book Bk at any stage is pk. We may associate each book Bk with the face Fk defined by

σj(Fk) =


+, cj ∈ Bk

0, cj /∈ Bk

and define the measure w on F(Bn) by w(Fk) = pk for k = 1, ..., n. Letting {Xk} denote

the BHR walk on Bn driven by w and having initial state X0 ∼ (−, ...,−), the coupons

collected stage k are precisely those ci with of σi(Xk) = +. Note that w is separating

if and only if every coupon is contained in some book. In this case, the stationary

distribution is the point mass at C ∼ (+, ...,+). Also, this process is equivalent to the

walk on F(Bn) started at X0 = O, so our previous analysis shows that the total variation

distance to stationarity is equal to the bounds in Theorems 2.2.2 and 2.2.3. In many

ways, this example encapsulates the main ideas underlying convergence of hyperplane

chamber walks. In particular, for the chain to equilibriate, one needs to “collect” faces

with nonzero sign-sequence coordinates for each i.

2.3.2 Braid Arrangement

Another important example is the braid arrangement on Rn. This is the set of all
(
n
2

)
hyperplanes of the form {x ∈ Rn : xi − xj = 0}. The chambers of this arrangement

can be indexed by the symmetric group on n symbols with π ∈ Sn corresponding to the

chamber Cπ = {x ∈ Rn : xπ(1) > xπ(2) > ... > xπ(n)}. This is because the points in a

given chamber are not contained in any hyperplane {xi = xj}, thus all coordinates of

such points must differ. The relative ordering of the coordinates of two points in the

same chamber are identical since one must pass through a hyperplane to change that
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ordering. Similarly, the faces of the braid arrangement are in bijective correspondence

with the ordered set partitions of [n], the partition (B1, ..., Bl) corresponding to the face

consisting of all points x such that xi = xj if i, j ∈ Br for some r = 1, ..., l and xi > xj if

xi ∈ Br, xj ∈ Bs for some 1 ≤ r < s ≤ l. (The chambers are the faces corresponding to

partitions where all blocks have size 1.) In terms of sign sequences, if F ∼ (B1, ..., Bl),

then the (i, j)th coordinate of σ(F ) - that is, the coordinate indicating which side of the

hyperplane {xi = xj} F belongs to - is given by

σ(i,j)(F ) =



−, i ∈ Bs, j ∈ Br for some 1≤r < s ≤ l

0, i, j ∈ Br for some 1≤r ≤ l

+, i ∈ Br, j ∈ Bs for some 1≤r < s ≤ l

.

(Unless specifically stated otherwise, we will take it as implicit when indexing objects

corresponding to the braid arrangement with the ordered pair (i, j) that i < j.)

When we identify the chambers with Sn so that π ∈ Sn corresponds to the chamber

Cπ = {xπ(1) > ... > xπ(n)}, then σ(Cπ) is related to the inversion set of π−1, where the

inversion set of τ ∈ Sn is defined as Inv(τ) = {(i, j) : i < j, τ(i) > τ(j)}. Specifically,

since for all i < j, σ(i,j) = − if and only if j = π(r) and i = π(s) with r < s if and only

if (i, j) ∈ Inv(π−1), we have

σ(i,j)(π) := σ(i,j)(Cπ) =


−, (i, j) ∈ Inv(π−1)

+, (i, j) /∈ Inv(π−1)

.

In particular, we see that the identity permutation has sign sequence σ(id) = (+, ...,+)

and the permutation πrev defined by πrev(k) = n − k + 1 has sign sequence σ(πrev) =

(−, ...,−).
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The face F ∼ (B1, ..., Bk) acts on the face G ∼ (C1, ..., Cl) by refinement so that

FG ∼ (B1 ∩C1, ..., B1 ∩Cl, ..., Bk ∩C1, ..., Bk ∩Cl)∧ where the hat means “delete empty

intersections.” If you think of the chamber Cτ as a deck of n cards ordered with the

card labeled τ(i) in the ith position from the top, then the face F ∼ (B1, ..., Bk) acts

on Cτ by removing all cards with labels in B1 and placing them on top, retaining their

relative order, then removing all cards with labels in B2 and placing them next, and

so on. For example, take n = 7 and consider the faces F ∼ ({1, 2}, {5}, {3, 4, 7}, {6}),

G ∼ ({5, 7}, {1, 2, 6}, {3, 4}) and the chamber C ∼ (3625174). Then we have FG ∼

({1, 2}, {5}, {7}, {3, 4}, {6}) and FC ∼ (2153746).

As a first example of random walks on braid arrangements, consider the probability

measure that assigns weight wi ≥ 0 to the face Fi corresponding to the ordered set

partition ({i}, [n] \ {i}) for i = 1, ..., n where
∑n

i=1wi = 1. If we think of chambers as

orderings of a deck of cards, then the walk proceeds by picking the card labeled i with

probability wi and placing it on top of the deck. This model appears under the name of

the Tsetlin library in the theory of dynamic file management. If we picture the chambers

as stacks of files with file i being used with propensity wi, then the walk corresponds to

placing a file on the top of the stack every time it is used. Over time, the most used

files will tend to be near the top. If the weights are all equal, (w1 = ... = wn = 1
n),

then the chamber walk is equivalent to the random-to-top shuffle in which at each stage

a card is chosen uniformly at random and placed on top of the deck. This is the inverse

of the more commonly discussed top-to-random shuffle and it follows from the basic

theory of random walks on groups that both shuffles mix at the same rate. Since a

face F is contained in the hyperplane H(i,j) = {xi − xj = 0} if and only if i and j
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are contained in the same block in the partition corresponding to F , it follows from

Theorem 2.2.1 that, for the random-to-top walk, the eigenvalues corresponding to the

hyperplanes are given by λH(i,j)
=
∑

F⊆H(i,j)
w(F ) = 1 − 2

n for all i 6= j (as every

face in the support of w is contained in H(i,j) except the ones corresponding to the

partitions ({i}, [n] \ {i}) and ({j}, [n] \ {j})). Consequently, we have the upper bound∥∥P lC − π∥∥TV ≤∑H∈A λ
l
H =

(
n
2

)
(1− 2

n)l, so the total variation distance is less than 1
2e
−c

after n log(n) + cn shuffles. Previous work of Diaconis and Aldous [3] and Diaconis, Fill,

and Pitman [24] shows that this bound is sharp. In the case of the Tsetlin library, the

upper bound is
∥∥P lC − π∥∥TV ≤ ∑1≤i<j≤n(1 − wi − wj)l. The largest terms in this sum

correspond to the smallest values of wi + wj , or the least frequently used files. This also

makes sense from the coupling perspective since the chain equilibriates once all files have

been used at least once, so it should take longer when some of the files are used very

rarely.

Before continuing our analysis of walks on the braid arrangement, we observe that

random-to-top shuffles also admit a product chain description. The idea is inspired by

the standard correspondence between permutations and the chambers in the braid ar-

rangement. Recall that we have been identifying the permutation π with the vector

σ(π) ∈ {−,+}{(i,j)∈N2:1≤i<j≤n} defined by

σ(i,j)(π) =


−, (i, j) ∈ Inv(π−1)

+, (i, j) /∈ Inv(π−1)

.

Now consider the chain on Ω = {−,+}{(i,j)∈N2:1≤i<j≤n} (which is a strictly larger state

space than the set of sign sequences of chambers in the braid arrangement) which proceeds
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by picking a number k uniformly from [n] and then setting σ(i,k) = − and σ(k,l) = + for all

i < k < l. If the chain begins at a state x = σ(π) for some π ∈ Sn, then this is equivalent

to the random-to-top shuffle since we are just declaring that k precedes all numbers in the

list π(1), π(2), ..., π(n) and the relative positions of all other numbers remain unchanged.

To better visualize this, think of π as representing a deck of cards labeled 1 through n

with π(r) the label of the card in position r. Then π−1(s) gives the position of the card

labeled s. Thus the card labeled k is on the top of the deck if and only if π−1(k) < π−1(r)

for all r ∈ [n]\{k}. This is equivalent to requiring that (i, k) ∈ Inv(π−1) for all i < k and

(k, j) /∈ Inv(π−1) for all j > k. Because all coordinates of σ(π) which do not involve k

stay the same, the effect of the proposed transition is to place card k at the top of the deck

originally ordered as π and leave all other cards in the same relative order. This shows

that the chain restricted to S = {x ∈ Ω : x = σ(π) for some π ∈ Sn} is equivalent to the

random-to-top shuffle and that S is a closed and irreducible subset of Ω. Consequently,

we may choose a basis so that this Markov chain defined on Ω has transition matrix

P =

 R 0

M N


where R is the transition matrix for the random-to-top chain on Sn. Accordingly, if we

can find eigenfunctions for P , then they will restrict to an eigenfunctions of R.
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Now we can represent P as a linear combination of tensor product chains as in sub-

section 1.3.2. To do so, let Q be uniform on [n] and for each k ∈ [n], 1 ≤ i < j ≤ n,

define transition matrices on Ω(i,j) = {−,+} by

P
(k)
(k,j) =

 0 1

0 1

 , P
(k)
(i,k) =

 1 0

1 0

 , P
(k)
(i,j) =

 1 0

0 1


for all k 6= i, j. It follows from the definition of the chain and the results of subsection

1.3.2 that

P =

n∑
k=1

Q(k)
⊗
(i,j)

P
(k)
(i,j) =

1

n

n∑
k=1

⊗
(i,j)

P
(k)
(i,j)

where the product is taken in lexicographic order. The family
{
P

(k)
(i,j)

}n
k=1

is not si-

multaneously diagonalizable, so Theorem 1.3.3 and its generalizations are not directly

applicable. Nonetheless, we may guess that certain eigenfunctions can be represented as

tensor products of functions. Since φ0 ≡ 1 is an eigenfunction for each P
(k)
(i,j), if we assume

that most of the components are copies of φ0, then our analysis will be greatly simplified.

Specifically, given any i < j, let ϕ(i,j) =
⊗

(k,l) φ(k,l) where φ(k,l) ≡ 1 when (k, l) 6= (i, j)

and φ(i,j) : Ω(i,j) → R is yet to be determined. Then for any x ∈ Ω =
⊗

(i,j) Ω(i,j), we

have

Pϕ(i,j)(x) =
∑
y

P (x, y)ϕ(i,j)(y) =
∑
y

ϕ(i,j)(y)

 1

n

n∑
r=1

⊗
(k,l)

P
(r)
(k,l)(x, y)


=

1

n

n∑
r=1

∑
y

ϕ(i,j)(y)
⊗
(k,l)

P
(r)
(k,l)(x, y)


=

1

n

n∑
r=1

∏
(k,l)

 ∑
y(k,l)∈Ω(k,l)

φ(k,l)(y(k,l))P
(r)
(k,l)(x(k,l), y(k,l))
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=
1

n

n∑
r=1

∑
y(i,j)∈Ω(i,j)

φ(i,j)(y(i,j))P
(r)
(i,j)(x(i,j), y(i,j))

=
∑

y(i,j)∈Ω(i,j)

φ(i,j)(y(i,j))

(
1

n

n∑
r=1

P
(r)
(i,j)(x(i,j), y(i,j))

)

Thus in order to have

Pϕ(i,j)(x) = λϕ(i,j)(x)

= λ

 ∏
(k,l)<(i,j)

φ(k,l)(x(k,l))

φ(i,j)(xi,j))

 ∏
(k,l)<(i,j)

φ(k,l)(x(k,l))


= λφ(i,j)(xi,j)),

it is necessary and sufficient that

∑
y(i,j)∈Ω(i,j)

φ(i,j)(y(i,j))

(
1

n

n∑
r=1

P
(r)
(i,j)(x(i,j), y(i,j))

)
= λφ(i,j)(x(i,j)).

It follows from the definition of
{
P

(k)
(i,j)

}n
k=1

that the left-hand side of the above equation

may be more compactly represented as P(i,j)φ(i,j)(x(i,j)) where

P(i,j) =
1

n

∑
k 6=i,j

I + P
(k)
(i,k) + P

(k)
(k,j)



=
1

n


 n− 2 0

0 n− 2

+

 1 0

1 0

+

 0 1

0 1




=

 n−1
n

1
n

1
n

n−1
n

 ,
hence ϕ(i,j)(y) will be an eigenfunction of P with eigenvalue λ if and only if φ(i,j) is an

eigenfunction of P(i,j) with eigenvalue λ. One readily checks that P(i,j) has eigenvalues
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λ = 1 and λ = 1 − 2
n and corresponding eigenvectors [ 1

1 ] and
[−1

1

]
. Thus a nontrivial

eigenfunction is obtained by defining

φ(i,j)(x(i,j)) =


−1, x(i,j) = −

1, x(i,j) = +

,

so that

ϕ(i,j)(x) =


−1, x(i,j) = −

1, x(i,j) = +

is an eigenfunction of P with eigenvalue 1 − 2
n . Accordingly, for each 1 ≤ i < j ≤ n,

restricting ϕ(i,j) to S shows that

ϕ#
(i,j)(π) =


−1, (i, j) ∈ Inv(π−1)

1, (i, j) /∈ Inv(π−1)

is an eigenfunction for the random-to-top shuffle with eigenvalue λ(i,j) = 1 − 2
n . We

will obtain the same result with less work in chapter 3, but it is interesting to note

that some information can be gained from the product chain perspective even when the

conditions of Theorem 1.3.3 are not met. Observe that the above procedure is applicable

in the analysis of other generalized product chains as well and essentially amounts to

lumping the product chain according to the equivalence relation defined by agreement in

a particular (subset of) coordinate(s).

Another example involving the braid arrangement is the inverse of the famous riffle

shuffle introduced by Gilbert, Shannon, and Reeds. In this case, the distribution of w is

uniform over all two-block partitions (S, [n] \ S), S ⊆ [n] (including the degenerate cases

S = Ø and S = [n]). In terms of card shuffling, multiplication by the face F ∼ (S, [n]\S)
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corresponds to “unriffling” the deck by moving all cards indexed by S to the front of the

deck while retaining their original order. Since all two-block partitions are equally likely,

we are essentially flipping a fair coin n times, marking the ith card if the ith flip results

in a heads, and then moving all of the marked cards to the front of the deck. This is

precisely the inverse of the GSR shuffle as explained in [6]. The bound from Theorem

2.2.2 works out to be
∥∥P lC − π∥∥TV ≤ (n2) 1

2l
, hence 2 log2(n)+c−1 steps make the distance

to uniformity less than 2−c. The correct mixing time is known to be about 3
2 log2(n), so,

as with the Ehrenfest urn, the bound is good but not optimal [12]. More generally, if

we assign weight a−n to each of the an ordered partitions of [n] into a blocks (some of

which may be empty), then the corresponding hyperplane walk is equivalent to inverse

a-shuffles. (An a-shuffle results from successively cutting the deck into a piles and then

dropping cards from each pile with probability proportional to the pile’s size [6].) Then

every face FB1,...,Ba ∼ (B1, ..., Ba) has sign sequence

σ(i,j)(FB1,...,Ba) =



−, i ∈ Bl, j ∈ Bk, 1 ≤ k < l ≤ a

0, i, j ∈ Bk, 1 ≤ k ≤ a

+, i ∈ Bk, j ∈ Bl, 1 ≤ k < l ≤ a

,

so each of the
(
n
2

)
hyperplanes contributes the eigenvalue

λH(i,j)
=

1

an
|{(B1, ..., Ba) : i, j ∈ Bk for some k ∈ [a]}| = 1

an
an−2 · a =

1

a

as the number of ordered partitions of [n] into a blocks such that i and j are contained

in a common block can be enumerated by first picking one of the an−2 ordered partitions

of [n] \ {i, j} into a blocks and then choosing which of the a blocks to add {i, j} to.
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We can also think of the faces of the braid arrangement as representing non-strict

preferences where the face F ∼ (B1, ..., Bk) corresponds to a ranking of n alternatives

with the alternatives indexed by B1 being the most preferred (but deemed equal to

one another), those indexed by B2 being the second most preferred, and so on. The

chambers then correspond to strict linear rankings. If k judges rank n items, then we

can define the face measure w by letting w(F ) be equal to the number of judges with

preferences corresponding to F divided by k. This measure is separating as long as no

two alternatives are tied in each judge’s ranking. A step in this walk corresponds to

picking a judge at random and then letting them update the current ranking by moving

their favorite alternatives to the top of the list (with tied alternatives retaining their

original order), then moving their second favorite alternatives to below those, and so

on. This provides a means of passing from a distribution on non-strict rankings, w,

to a distribution on strict rankings, π, the stationary measure of the hyperplane walk.

Hiroaki Terao has demonstrated the applicability of the hyperplane perspective to voting

theory by establishing a version of Arrow’s impossibility theorem as a corollary of a result

concerning admissible mappings on the chambers of hyperplane arrangements [68], and

the foregoing suggests other possible connections.

Finally, the faces F ∼ (B1, ..., Bk) with |B1| ≥ ... ≥ |Bk| are in an obvious bijective

correspondence with Young tabloids (Young tableaux modulo row equivalence). The

action of permutations on tabloids is fundamental to the representation theory of Sn,

and it might be interesting to study how tabloids act on permutations in terms of the

face product. One natural measure would be w(F ) = fλ
n! if F ∼ (B1, ..., Bk) where Bi

consists of the numbers in the ith row of a standard tableau of shape λ and fλ denotes
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the number of such tableaux. This is a probability measure since
∑

λ`n
f2
λ
n! = 1 by RSK

correspondence, and there are clear connections with the Plancherel measure and the

representation theory of Sn. It may also be interesting to examine the dynamics of the

random walk induced by letting w be uniformly distributed over the
(

n
λ1,...,λk

)
F ∈ F such

that F ∼ (B1, ..., Bk) with |Bi| = λi for various choices of λ = (λ1, ..., λk) ` n. Analyzing

these walks seems to be quite a formidable task, but it would almost certainly yield some

fascinating mathematics.

2.3.3 Dihedral Arrangement

Let A consist of m lines through the origin in R2. We will assume throughout that the

lines are equally spaced so that A is the reflection arrangement of the dihedral group of

order 2m. The hyperplanes may be written in polar coordinates as Hi = {(r, θ) : r ∈

R, θ = πi
m}. The 2m “wedges” Cj =

{
(r, θ) : r > 0, θ ∈

(
π(j−1)
m , πjm

)}
are the chambers of

this arrangement, the 2m rays Rj =
{

(r, θ) : r > 0, θ = π(j−1)
m

}
are the one-dimensional

faces, and the origin is a zero-dimensional face, hence |F| = 4m + 1. If we orient the

hyperplanes so that σ(C1) = (+, ...,+), then the chambers have sign sequences given by

σi(Cj) =


+, j ≤ i or m+ i < j

−, else

,

the 1-dimensional faces have sign sequences

σi(Rj) =



+, j < i or m+ i < j

0, i = j or i+m = j

−, else

,

83



and, of course, σ({0}) = (0, ..., 0). The intersection lattice has bottom element V = R2,

which is covered by each of the m hyperplanes Hi, which are in turn each covered by the

origin. Thus one has µ(V, V ) = 1, µ(V,Hi) = 1, and µ(V, {0}) = m− 1.

Define a face measure w by w(Rj) = pj for j = 1, ..., 2m where pj ≥ 0,
∑2m

j=1 pj = 1,

and pi+pi+m < 1 for i = 1, ...,m. The last condition ensures that w is separating. Brown

and Diaconis describe the resulting chamber walk in terms of a circular house containing

2m rooms (the chambers) separated by 2m walls (the 1-dimensional faces). The walls of

the house are inhabited by a mouse and the rooms by a cat. At each time step, the mouse

travels to wall Rj with probability pj and the cat moves from its present room to the

nearest room adjacent to that wall. The state of the chamber walk at time n represents

the room the cat is then occupying. Alternatively, the chambers can be identified with

the edges of a regular 2m-gon and the 1-dimensional faces with its vertices. One can

imagine a queuing system with service points at the vertices and a server which moves

around on the edges. Requests arrive at the service point with propensities p1, ..., p2m

and the server moves to the nearest edge [12].

It follows from Theorem 2.2.1 that λV = 1 is a simple eigenvalue of the associated

chamber walk, λ{0} = 0 is an eigenvalue of multiplicity m− 1, and for i = 1, ...,m, each

hyperplane contributes a single eigenvalue λHi = pi + pi+m. In this case, the bound from

Theorem 2.2.2 is
∥∥P kC − π∥∥TV ≤ ∑m

i=1(pi + pi+m)k. Now recall the description of the

stationary distribution in terms of sampling faces from w in which all faces contained in

the support of the product F1 · · ·Fk are discarded at the kth step and we cease sampling
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once the product is a chamber. In this case, we need only sample two faces and one

readily computes the stationary distribution as

π(Cj) = w(Fj)

∑j+m−1
i=j+1 w(Fi)

1− w(Fj)− w(Fj+m)
+ w(Fj−1)

∑j+m
i=j w(Fi)

1− w(Fj−1)− w(Fj+m−1)

where the indices are taken modulo 2m.

One can construct slightly more general walks on the chambers of a dihedral arrange-

ment by enlarging the support of the face measure to include the origin and/or some of

the chambers, and indeed this may be useful for some models. However, for hyperplane

walks in general, putting mass on the face O ∼ (0, ..., 0) is equivalent to adding hold-

ing probability w(O) to the walk driven by w̃(F ) = (1− w(O))−1w(F )1{F 6= O} and

so adds nothing substantially new to the analysis: If P is the walk driven by w and P̃

is the walk driven by w̃, then the eigenfunctions (and thus the stationary distribution)

of P and P̃ are the same, the eigenvalues of P are given by w(O)(1 − λ) + λ where λ

is an eigenvalue of P̃ , and P mixes more slowly than P̃ by a factor of w(O). Adding

mass to the chambers has more dramatic effects. In particular, since the chain will be

stationary as soon as a chamber has been drawn, it will mix faster than the walk with

w(C) distributed evenly over the rest of the faces and the stationary distribution will be

more concentrated on and around those chambers C with w(C) > 0. However, one would

study the behavior of such a chain at any given time by conditioning on whether or not

a chamber had been sampled, so the problem essentially reduces to the case where the

face measure is supported on faces of codimension at least one.
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2.4 Extensions

2.4.1 Rows of Colored Tiles

We have seen that it is sometimes convenient to represent the face semigroup of a hyper-

plane arrangement in terms of rows of colored tiles where a face F in the arrangement

A = {Hi}mi=1 corresponds to a row of m tiles where the color of the ith tile corresponds

to the ith coordinate of σ(F ). Multiplication is defined in terms of stacking the rows,

keeping in mind that one can see through the clear tiles while the other tiles are opaque.

A natural generalization of this idea is to allow for more than two colors of opaque tiles.

Specifically, given a set of “colors” C, we can consider the set RCT (C,m) = (C ∪ {0})m.

For S ∈ RCT (C,m), we define τi(S) ∈ C ∪ {0} to be the ith coordinate of S and we

endow RCT (C,m) with a product structure by

τi(ST ) =


τi(S), τi(S) 6= 0

τi(T ), τi(S) = 0

.

(Here 0 represents the clear tiles.) This makes RCT (C,m) into a monoid with identity

element I satisfying τi(I) = 0 for all i ∈ [m]. It is also clear that for any S, T ∈

RCT (C,m), we have S2 = S and STS = ST , thus RCT (C,m) is an example of a left-

regular band (which we will discuss further in the next subsection). Moreover, R = {S ∈

RCT (C,m) : τi(S) 6= 0 for all i} is a two-sided ideal (analogous to C ⊆ F) and many of

the results for BHR walks carry over to this setting if we restrict the state space to R.
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The preceding also applies to any subsemigroup of RCT (C,m). Indeed, for any

arrangement A = {Hi}mi=1, the face semigroup F(A) is isomorphic to the subsemigroup

of RCT ({−,+},m) < RCT ({−,+, ∗},m) given by

K(A) = K[m](A)

= {S ∈ RCT ({−,+},m) : ∃F ∈ F(A) with τi(S) = σi(F ) ∀ i ∈ [m]}.

More generally, for any B ⊆ [m], the face set of the subarrangement B = {Hi}i∈B is

isomorphic to the subsemigroup of RCT ({−,+, ∗},m) given by

K(B) = KB(A)

= {S : τi(S) = ∗ ∀ i ∈ BC and ∃F ∈ F(A) with τi(S) = σi(F ) ∀ i ∈ B}.

The isomorphism is given by φB(S) = F such that σi(F ) = τi(S) for all i ∈ B. (We omit

the subscript when B = A.)

Adopting this framework provides an interesting interpretation of projections onto

subarrangements which makes the idea of “blacking out” tiles more rigorous. Suppose

that B ⊆ [m], and let K(A), K(B) be as above. Define the blackout map g : K(A) →

K(B) by

τj(g(S)) =


∗, j ∈ BC

τj(S), j ∈ B
.

If F ∈ F(A) corresponds to S = φ−1(F ) ∈ K(A), then g(S) corresponds to the face

F = φB(g(S)) ∈ F(B), and F ⊆ F since σi(F ) = τi(g(S)) = τi(S) = σi(F ) for all i ∈ B.
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For any S, T ∈ K(A),

τj(g(ST )) =


∗, j ∈ BC

τj(ST ), j ∈ B
=



∗, j ∈ BC

τj(S), j ∈ B, τj(S) 6= 0

τj(T ), j ∈ B, τj(S) = 0

=


τj(g(S)), τj(f(S)) 6= 0

τj(g(T )), τj(f(S)) = 0

= τj(g(S)g(T )),

hence g is a semigroup homomorphism. Moreover, for any R ∈ K(B), there is an F ∈

F(A) with τj(R) = σj(F ) for all j ∈ B, so R = g(S) where S = φ−1(F ), hence g

is surjective as well. Therefore, by the first isomorphism theorem for semigroups, we

have K(B) ∼= K(A)/ ker(g). Now for any S, T ∈ K(A), g(S) = g(T ) if and only if

σj(φ(S)) = τj(S) = τj(T ) = σj(φ(T )) for all j ∈ B. Thus the equivalence relation on

F(A) given by F ∼B G if σj(F ) = σj(G) for all j ∈ B is a semigroup congruence with

canonical surjection πB = φB ◦g◦φ−1, and we have F(A)/ ∼B∼= K(A)/ ker(g) ∼= K(B) ∼=

F(B). Since the equivalence relation F ∼ G if F,G ∈ C(A) or F,G /∈ C(A) is also a

semigroup congruence, the second isomorphism theorem in universal algebra implies that

if we restrict ∼B to the chambers of B, then C(A)/ ∼B ∼= C(B). (Alternatively, one could

just run through the above argument replacing K(A) and K(B) with their subsemigroups

consisting of elements with no zero coordinates to conclude that C(A)/ ∼B ∼= C(B).)

The preceding paragraph says that we can project the faces of a hyperplane arrange-

ment onto those of a subarrangement by sending each face F ∈ F(A) to the unique face

in F ∈ F(B) containing F in a manner which preserves the semigroup structure by intro-

ducing the equivalence relation on F(A) given by F ∼B G if and only if σi(F ) = σi(G)
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for all i ∈ B. This projection maps C(A) homomorphically onto C(B). We will be inter-

ested in lumping BHR chains using ∼B in order to find eigenfunctions via Theorem 1.3.1

and the foregoing provides a nice interpretation of the lumped chains in terms of both

faces of subarrangements and rows of colored tiles. This could be accomplished without

appealing to the various RCT semigroups, and indeed this is the approach taken in [5] to

verify that the assumptions of an equivalent formulation of Theorem 1.3.1 are satisfied in

this setting. The perspective adopted there is to view induced walks on subarrangements

as functions of the original walk defined in terms of the maps which send F ∈ F(A) to

F ∈ F(B) such that F ⊆ F and verification of the properties of these maps is left to the

reader. In section 3.1, we show directly that hyperplane walks are lumpable with respect

to ∼B and the proof is a little more streamlined from this point of view, but the relation

between F(A)/ ∼B and F(B) is not quite as transparent. The above is intended merely to

clarify and make rigorous the relations between the face semigroups, congruence classes,

and RCT interpretations.

Finally, we observe that in addition to providing a visual aid for hyperplane walks

and a generalization thereof in which many of the proofs carry over directly, these RCT

walks may be useful for modeling product chains in which the component state spaces

have cardinality greater than two (in a manner analogous to the conquering territories

examples) by taking |C| = maxi |Ωi|. They also allow for generalizations of some of the

models we have previously considered. For example, one could consider the case where

there are more than two competing forces in the conquering territories models or more

than two urns in the Ehrenfest urn example.
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2.4.2 Oriented Matroids and Left-Regular Bands

Matroids are combinatorial objects introduced by Hassler Whitney in 1935 as a means

of abstracting the notion of linear independence in finite dimensional vectors spaces over

arbitrary fields [69]. Oriented matroids specialize to the case of dependence structures

in vector spaces over ordered fields and generalize properties of directed graphs and face

semigroups of hyperplane arrangements [55]. There are many ways of axiomatizing the

structure of oriented matroids which are not obviously equivalent. We will adhere to

the construction in [12] as it relates most clearly to faces in a central arrangement of

hyperplanes. According to this definition, a set X ∈ {0,±}m is an oriented matroid if

1. 0 = (0, ..., 0) ∈ X

2. x = (x1, ..., xn) ∈ X implies that −x = (−x1, ...,−xn) ∈ X

3. x, y ∈ X implies x · y ∈ X where

(x · y)i =


xi, xi 6= 0

yi, xi = 0

4. For x, y ∈ X , define S(x, y) = {i : xi = −yi 6= 0}. Then for every i ∈ S(x, y), there

is a z ∈ X with zi = 0 and zj = (x · y)j = (y · x)j for all j /∈ S(x, y).

By inspection, the sign sequences of faces in F(A) satisfy the above properties for any

central arrangement A. An oriented matroid which arises from the faces of central hyper-

plane arrangements is said to be realizable. There are oriented matroids which are not

realizable, but the Folkman-Lawrence topological representation theorem says that all

oriented matroids can be represented in terms of arrangements of pseudospheres (which
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are analogues of hyperplane arrangements in which the “pseudo-hyperplanes” are not

necessarily flat) [12, 55]. An element x ∈ X such that xi 6= 0 for all i is called a chamber

of X . Also, for every face z ∈ X , we can define the support of z in terms of the support

set Az = {i ∈ [m] : zi = 0} and the set of supports forms an intersection lattice just as

in the case of hyperplane arrangements. If X is an oriented matroid with chamber set

C(X ) 6= Ø and w is any probability measure on X , then we may define a random walk

on C(X ) by P (x, y) =
∑

z·x=y w(z). Brown and Diaconis show that Theorems 2.2.1 and

2.2.1 carry over to oriented matroids [12]. One can also define correlates of hyperplane

subarrangements for oriented matroids by restricting attention to the coordinates in sup-

port sets, and the argument that one can recover eigenfunctions via projections given

here in chapter 3 can be easily adapted to the case of random walks on oriented matroids

thereby. Moreover, analogously to embedding chamber walks on arbitrary arrangements

into walks on Boolean arrangements as described in subsection 2.3.1, all random walks on

oriented matroids can be realized as random walks on Boolean arrangements by defining

the measure w̃ on F(Bm) by w̃(F ) = w ((x1, ..., xn)) if σi(F ) = xi for i = 1, ..., n and

w̃(F ) = 0 if there is no (x1, ..., xn) ∈ X such that σi(F ) = xi for all i ∈ [n]. Similarly,

oriented matroids can be seen as special cases of the RCT framework in which there are

only two opaque colors. Thus many features of random walks on oriented matroids can

be deduced from results concerning random walks on hyperplane arrangements and rows

of colored tiles.

A further generalization of random walks on hyperplane arrangements, oriented ma-

troids, and rows of colored tiles is given by the notion of a (finite) left-regular band. A

band is an idempotent semigroup S and it is said to be left-regular if it also satisfies
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xyx = xy for all x, y ∈ S [13]. Equivalently, a finite semigroup S is a LRB if there is a

lattice L and a surjective map supp : S → L which satisfies supp(xy) = supp(x)∨supp(y)

and xy = x if and only if supp(x) ≤ supp(y) [62]. (This characterization applies to finite

bands in general if one only requires L to be an upper semilattice and replaces the second

condition with supp(x) ≤ supp(y) if and only if x = xyx [13].) The first of these relations

says that supp is a semigroup homomorphism when L is regarded as a (commutative)

semigroup under the join operation and the second says that supp is an order-preserving

poset surjection. It is clear from the first definition that oriented matroids and face

semigroups of hyperplane arrangements are both examples of left-regular bands. When

applying the second definition to hyperplane walks, the lattice L should be viewed as the

lattice of support sets of flats ordered by inclusion rather than the intersection lattice as

we defined it because we chose to order the flats by reverse inclusion. The elements x ∈ S

with supp(x) = 1̂ are called chambers.

If S is a finite semigroup, I ⊆ S is a left ideal, and w is a probability measure on

S, then one can define a Markov chain on I by P (s, t) =
∑

xs=tw(x). When S is a

band, we will say that the measure w is separating if for each H ∈ L with H l 1̂, there

is an x ∈ S with supp(x) � H and w(x) > 0. If S is a left-regular band, then upon

identifying S with F(A), C = {x ∈ S : supp(x) = 1̂} with C(A), and L with L(A),

the proof of Theorem 2.2.2 given here carries over directly to random walks on LRBs.

(Alternatively, if we W = {F[1], ..., F[r]} ⊆ S be an enumeration of the support of w and

write C′ = {F[σ(r)] · · ·F[σ(1)] : σ ∈ Sr} as in the proof of Theorem 2.2.2, then the argument

given there shows that a necessary and sufficient condition for the existence of a unique

stationary distribution is that C′ is a right ideal in the semigroup C.) Theorem 2.2.1 also
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generalizes, but the approach is a little more delicate and relies on a careful analysis of

the semigroup algebra.

In [14], Ken Brown established that the transition matrices for random walks on

the chambers of left-regular bands are diagonalizable by appealing to a criterion for the

semisimplicity of an algebra generated by a single element, a = Tw, in terms of the poles of

the generating function for the powers of a. Using semigroup representation theory, Brown

was also able to determine the eigenvalues, with multiplicity, of the transition matrix of

the random walk on the chambers of any finite band [13]. These results were further

generalized to a larger class of finite semigroups known as semilattices of combinatorial

archimedian semigroups by Benjamin Steinberg [67]. Building on Brown’s results, Franco

Saliola gave a nice description of the eigenspaces of LRB walks in terms of the primitive

orthogonal idempotents of the semigroup algebra [62].

All of these results involve identifying right multiplication by P with the element

Tw =
∑

x∈S w(x)x ∈ kS acting on the vector space kC by left multiplication as described

in section 2.2. Though this approach is elegant, enlightening, and gives the eigenvalues of

P directly, it is not particularly easy to recover the eigenvectors of P from the eigenspace

decomposition in terms of orthogonal idempotents in the semigroup algebra. We provide

a partial remedy in the case of hyperplane chamber walks in the following chapter where

it is shown that many of the right eigenvectors arise from projecting the chains onto

subarrangements. By reducing the state space, we can compute the eigenvectors of the

lumped chains explicitly and then lift them to the original chain to obtain concrete

expressions for the eigenvectors corresponding to the largest eigenvalues.
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Chapter 3

Eigenfunctions

3.1 Eigenfunctions for Hyperplane Walks

The present section addresses one of the primary contributions of this dissertation, finding

explicit right eigenfunctions for random walks on the chambers of central hyperplane

arrangements in Rn. The key insight here is that these Markov chains are lumpable (in

the sense of Theorem 1.3.1) with respect to equivalence relations on the set of chambers

induced by projections onto subarrangements, thus one can compute the eigenfunctions

of the lumped chains and lift them to obtain eigenfunctions for the original chain. We

begin with the following lemma, an equivalent formulation of which can be found in [5].

Lemma 3.1.1. For any hyperplane arrangement A = {Hi}mi=1, any set B ⊆ [m], and

any probability measure w on F(A), the Markov chain on C(A) defined by P (C,D) =∑
F∈F :
FC=D

w(F ) is lumpable in the sense of Theorem 1.3.1 with respect to the equivalence

relation defined by C ∼B C ′ if and only if σi(C) = σi(C
′) for all i ∈ B.
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Proof. For any C ∈ C(A), [D] ∈ C(A)/ ∼B,

P (C, [D]) =
∑

D′∼BD
P (C,D′) =

∑
D′∼BD

∑
F∈F(A):
FC=D

w(F ) =
∑

F∈F(A):
FC∼BD

w(F ).

Now in order that FC ∼B D, it is necessary and sufficient that

σi(D) = σi(FC) =


σi(F ), σi(F ) 6= 0

σi(C), σi(F ) = 0

for all i ∈ B. Suppose that C ′ ∼B C so that σi(C
′) = σi(C) for all i ∈ B. Then for any

F ∈ F , i ∈ B, we have that

σi(FC) =


σi(F ), σi(F ) 6= 0

σi(C), σi(F ) = 0

=


σi(F ), σi(F ) 6= 0

σi(C
′), σi(F ) = 0

= σi(FC
′).

Accordingly, for all C ′ ∼B C, FC ∼B D if and only if FC ′ ∼B D, and thus

P (C, [D]) =
∑

F∈F(A):
FC∼BD

w(F ) =
∑

F∈F(A):
FC′∼BD

w(F ) = P (C ′, [D]).

As detailed in subsection 2.4.1, the lumped chain may be interpreted as a random

walk on the chambers of the subarrangement B = {Hi}i∈B. In fact, using the notation

of 2.4.1, it follows from the definition of the lumped chain P#([C], [D]) = P (C, [D]) that

the induced walk is driven by the probability measure wB on C(B) defined by wB(F ) =∑
G∈F(A):
G=F

w(G). In terms of the RCT description, the lumped chain corresponds to

painting the tiles indexed by BC black in each row of tiles corresponding to the faces

in F(A) and proceeding according to the original dynamics - that is, choosing a row of

tiles corresponding to F with probability w(F ) and placing it on top of the stack. Of
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course, Lemma 3.1.1 carries over directly to random walks on the faces of a hyperplane

arrangements, oriented matroids, and RCT (C,m).

We begin by considering the lumped chain corresponding to subarrangements con-

sisting of a single hyperplane Bi = BHi . Projecting onto a subarrangement consisting

of a single hyperplane is equivalent to restricting attention to a single coordinate of the

chambers’ sign sequences (or a single tile position in the RCT description). Now for any

U,W ∈ L, if U ≤ W , then W ⊆ U , so λW =
∑

F∈F:
F⊆W

w(F ) ≤
∑

F∈F:
F⊆U

w(F ) = λU . As

such, the largest nontrivial eigenvalue must correspond to some Hi as the atoms of L are

precisely the hyperplanes. For i ∈ [m], we define the equivalence relation C ∼i C ′ if and

only if σi(C) = σi(C
′). By Lemma 3.1.1 and Theorem 1.3.1, this gives rise to a random

walk on C(A)/ ∼i∼= C(Bi) with transition probabilities

P#([C]Hi , [D]Hi) =
∑
D′∼iD

P (C,D′) =
∑
D′∼iD

∑
F∈F :
FC=D′

w(F ) =
∑
F∈F :

σi(FC)=σi(D)

w(F ).

Because C(Bi) consists of the two states + and −, if we define

pi =
∑
F∈F :
σi(F )=+

w(F ), qi =
∑
F∈F :
σi(F )=−

w(F ), ri =
∑
F∈F :
σi(F )=0

w(F ) = λi,

then the we can write

P# =

 qi + ri pi

qi pi + ri

 .
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We assume throughout that w is separating so that pi and qi are not both zero. One

easily checks that the eigenvalues of P# are λ = 1 and λ = ri with corresponding right

eigenvectors [ 1
1 ] and

[−pi
qi

]
. It follows from Theorem 1.3.1 that

φi(C) = ϕ[i(C) =


−pi, σi(C) = −

qi, σi(C) = +

is a right eigenfunction for the original transition operator P with eigenvalue λi. (Lemma

3.1.1 still applies if w is concentrated on some Hi, but then projection gives 1 as an

eigenvalue of multiplicity 2 and corresponding eigenvectors [ 1
0 ] and [ 0

1 ].)

For the sake of consistency, note that if we take B = Ø, so that there is a single

equivalence class, then the lumped transition matrix is given by P# = 1, which has

eigenvalue 1 and eigenfunction ϕ0 ≡ 1, so the trivial eigenfunction φ0 ≡ 1 also corresponds

to projection onto a subarrangement. Also, since w is separating, for every i ∈ [m], there

is some F ∈ F such that σi(F ) 6= 0 and w(F ) > 0, hence ri =
∑

F∈F :
σi(F )=0

w(F ) = λi < 1.

As such, pi + qi = 1 − ri > 0, so at least one of pi, qi is positive (and, by construction,

both pi and qi are nonnegative), hence φi(C) 6= φi(D) if σi(C) 6= σi(D). These facts

enable us to conclude that {φ0, φ1, ..., φn} is a linearly independent set. To see that this

is the case, suppose that αi1φi1 + ...+ αikφik ≡ 0 is a minimal dependence relation with

i1 < ... < ik. Let C,C ′ ∈ C be such that σik(C) = +, σik(C ′) = −, and σj(C) = σj(C
′)

for all j ∈ [n] \ {ik}. (By Zaslavsky’s theorem, the arrangement obtained by deleting Hik

has at least |µ(V,Hik)| = 1 less chamber than the original arrangement, so there is at

least one chamber in the deleted arrangement which is divided into two by the addition
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of Hik . These two chambers may be taken as C, C ′.) Then, adopting the above notation,

we have

αi1φi1(C) + ...+ αik−1
φik−1

(C) + αikqik = αi1φi1(C) + ...+ αikφik(C) = 0

= αi1φi1(C ′) + ...+ αikφik(C ′)

= αi1φi1(C) + ...+ αik−1
φik−1

(C)− αikpik ,

hence αikqik = −αikpik and thus αik(qik + pik) = 0. Because qik + pik = 1− rik > 0, this

means that αik = 0, contradicting the minimality of the dependence relation.

We record these facts as

Theorem 3.1.1. For each i = 1, ...,m, the Markov chain on C(A) defined by P (C,D) =∑
F∈F :
FC=D

w(F ) with w a separating probability measure on F has right eigenfunction

φi(C) =


−
∑

F∈F :
σi(F )=+

w(F ), σi(C) = −

∑
F∈F :
σi(F )=−

w(F ), σi(C) = +

corresponding to the eigenvalue λi =
∑

F∈F :
σi(F )=0

w(F ). P also has right eigenfunction φ0 ≡ 1

with eigenvalue λ0 = 1, and φ0, φ1, ..., φm are linearly independent.

Of course, Lemma 3.1.1 applies to projections onto any subarrangement. For exam-

ple, given any hyperplanes Hi, Hj ∈ A, one can consider the random walk induced on

the subarrangement {Hi, Hj}. Since this is a hyperplane arrangement in its own right

and {Hi}, {Hj}, and the empty arrangement are all subarrangements, we already know

three of the eigenfunctions - namely, the lifts of the trivial eigenfunction ϕ0, and the

eigenfunctions ϕi and ϕj corresponding to the eigenvalues λi and λj , and these in turn
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lift to eigenfunctions for the random walk on the chambers of A. The reader is spared

the computations, but if we set

ρx,y = ρ(i,j)
x,y =

∑
F∈F :
σi(F )=x
σj(F )=y

w(F )

for x, y ∈ {−, 0,+}, then analysis of the resulting 4× 4 matrix shows that the remaining

eigenfunction lifts to

φHi∩Hj (C) = ρ−1,0ρ0,1ρ1,−1 + ρ−1,1ρ0,−1ρ1,0 − ρ−1,0ρ0,−1ρ1,1

+ ρ0,1ρ1,0(1− ρ−1,−1 − ρ0,0), σi(C) = −, σj(C) = −;

φHi∩Hj (C) = ρ−1,0ρ0,1ρ1,−1 − ρ−1,−1ρ0,1ρ1,0 − ρ−1,0ρ0,−1ρ1,1

− ρ0,−1ρ1,0(1− ρ−1,1 − ρ0,0), σi(C) = −, σj(C) = +;

φHi∩Hj (C) = ρ1,0ρ0,−1ρ−1,1 − ρ−1,−1ρ0,1ρ1,0 − ρ−1,0ρ0,−1ρ1,1

− ρ0,1ρ−1,0(1− ρ1,−1 − ρ0,0), σi(C) = +, σj(C) = −;

φHi∩Hj (C) = ρ−1,0ρ0,1ρ1,−1 + ρ−1,1ρ0,−1ρ1,0 − ρ1,0ρ0,1ρ−1,−1

+ ρ0,−1ρ−1,0(1− ρ1,1 − ρ0,0), σi(C) = +, σj(C) = +.

As we are tacitly assuming that Hi 6= Hj , and both Hi and Hj are codimension 1

subspaces of V , we must have that Hi +Hj = V . Thus, since

dim(V ) + dim(Hi ∩Hj) = dim(Hi +Hj) + dim(Hi ∩Hj)

= dim(Hi) + dim(Hj) = 2 dim(V )− 2,
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we see that dim(Hi ∩Hj) = dim(V )− 2. Quotienting out by Hi ∩Hj shows that the sub-

arrangement {Hi, Hj} is combinatorially equivalent to an arrangement of two nonparallel

lines in the plane. Consequently, for each (x, y) ∈ {+,−}2, there is some C ∈ C with

σi(C) = x and σj(C) = y. In general, the state space of chamber walks on subarrange-

ments of k ≥ 3 hyperplanes may have cardinality less than 2k, so one must take care

when applying this procedure to arrangements other than the Boolean arrangement. Of

course, computing eigenfunctions by hand once the size of the state space exceeds four is

generally impractical, though using projections is still more numerically stable and often

faster than dealing with the original state space.

It is perhaps worth mentioning that this construction could be guessed at without

directly appealing to arguments involving projections. To see how this would work, let

ϕW denote an eigenfunction corresponding to λW . Then for every C ∈ C, we would have

λWϕW (C) = (PϕW )(C) =
∑
D∈C

P (C,D)ϕW (D) =
∑
D∈C

∑
F∈F :
FC=D

w(F )ϕW (D)

=
∑
F∈F

w(F )ϕW (FC) =
∑

r∈{−,0,+}kW

∑
F∈F :

σi(F )=ri ∀i∈AW

w(F )ϕW (FC)

=
∑

r∈{−,0,+}kW \{0}

∑
F∈F :

σi(F )=ri ∀i∈AW

w(F )ϕW (FC) +
∑
F∈F :

σi(F )=0 ∀i∈AW

w(F )ϕW (FC).

If one were to suppose for the sake of convenience that ϕW was constant over all chambers

with proscribed sign sequence coordinates in the positions indexed by the support set of

W , then the preceding becomes

λWϕW (C) =
∑

r∈{−,0,+}kW \{0}

∑
F∈F :

σi(F )=ri ∀i∈AW

w(F )ϕW (FC) + ϕW (C)
∑
F∈F :

σi(F )=0 ∀i∈AW

w(F )
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=
∑

r∈{−,0,+}kW \{0}

∑
F∈F :

σi(F )=ri ∀i∈AW

w(F )ϕW (FC) + λWϕW (C),

so ϕW must satisfy

∑
r∈{−,0,+}kW \{0}

∑
F∈F :

σi(F )=ri ∀i∈AW

w(F )ϕW (FC) = 0

for all chambers C. Solving this system of equations is equivalent to computing the

eigenfunctions of the projected chain.

To illustrate this approach, consider the case W = Hi. We compute

λiϕi(C) = (Pϕi)(C)

=
∑
F∈F :
σi(F )=+

w(F )ϕi(FC) +
∑
F∈F :
σi(F )=−

w(F )ϕi(FC) +
∑
F∈F :
σi(F )=0

w(F )ϕi(FC)

=
∑
F∈F :
σi(F )=+

w(F )ϕi(FC) +
∑
F∈F :
σi(F )=−

w(F )ϕi(FC) + λiϕi(C)

so that

∑
F∈F :
σi(F )=+

w(F )ϕi(FC) +
∑
F∈F :
σi(F )=−

w(F )ϕi(FC) = 0.

If we let pi =
∑

F∈F :
σi(F )=+

w(F ), qi =
∑

F∈F :
σi(F )=−

w(F ), and assume that

ϕi(C) =


a, σi(C) = +

b, σi(C) = −
,

then we see that

0 =
∑
F∈F :
σi(F )=+

w(F )ϕi(FC) +
∑
F∈F :
σi(F )=−

w(F )ϕi(FC)
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= a
∑
F∈F :
σi(F )=+

w(F ) + b
∑
F∈F :
σi(F )=−

w(F ) = api + bqi,

so, up to scaling, the solution is a = qi, b = −pi as previously deduced by examining the

projected chain.

Before concluding this section, we note that Lemma 3.1.1 and the accompanying proof

shows that the state of the Markov chain is completely determined by its evaluation at

eigenfunctions corresponding to the hyperplanes whenever the face measure is separating.

This is because φi takes distinct values depending on whether its argument is on the

positive or negative side of Hi and a chamber is uniquely determined by specifying which

side of each hyperplane it lies in. Thus one expects that analysis of the hyperplane

eigenfunctions should shed a good deal of light on the behavior of the associated chamber

walk.

We also mention that it is tempting to conjecture that in many cases all of the

eigenfunctions arise in terms of projection onto subarrangements corresponding to support

sets of flats. Since such eigenfunctions are constant on equivalence classes, this would

provide valuable information concerning the eigenspace decomposition. The general idea

is that given any W ∈ L, the lumped chain with respect to ∼AW (where AW = {i ∈

[m] : σi(W ) = 0}) corresponds to a walk on the chambers of the subarrangement BW =

{Hi}i∈AW = {Hi ∈ A : W ⊆ Hi}. As this is a hyperplane chamber walk in its own right,

Theorem 2.2.1 implies that the transition matrix for the projected chain is diagonalizable,
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and Lemma 2.1.1 and Zaslavsky’s Theorem show that the state space of the projected

chain has size

|CW | =
∑
U∈LW

|µW (V,U)| =
∑

U∈[V,W ]

|µ(V,U)| =
∑
U∈L:
U<W

|µ(V,U)|+ |µ(V,W )| .

Naively, projection onto further subarrangements corresponding to U < W accounts for∑
U∈L:
U<W

|µ(V,U)| of these eigenvalues/eigenfunctions, so the remaining |µ(V,W )| can be

said to arise from projection onto BW . The author has tried several approaches using well-

founded induction on the intersection lattice and ordinary induction on the dimension

or the number of hyperplanes (and appealing to Theorem 3.1.1 for the base case) to

make this rigorous, but has been unsuccessful thus far. The main problems involve the

fact that one may have λU 6= λU ′ when U 6= U ′ and the difficulty in establishing linear

independence of the eigenfunctions corresponding to incomparable flats U,U ′ < W . Still

it seems likely that something like this is true in many cases, and ideally one would

like to be able to use the lumping framework to recover all or part of Theorem 2.2.1,

perhaps with additional assumptions. Hopefully, further investigation investigation will

yield concrete results in this direction.

3.2 Examples

In order to illustrate the utility of the results in the preceding section, we will now

explicitly compute some of the top eigenfunctions for the random walks encountered in

section 2.3. We begin with lazy random walk on the hypercube, which corresponds to a

random walk on the Boolean arrangement Bn with face weights w(F ) = 1
2n if the σ(F )

has exactly one nonzero coordinate and w(F ) = 0 otherwise. We saw in subsection 2.3.1
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that each S ⊆ [n] contributes the eigenvalue λS = 1− |S|n with multiplicity one. Thus the

largest nontrivial eigenvalue is λ = 1− 1
n with multiplicity n. By Theorem 3.1.1, a basis

for the corresponding eigenspace is given by {ϕi}ni=1 where

φi(C) =


−
∑

F∈F :
σi(F )=+

w(F ), σi(C) = −

∑
F∈F :
σi(F )=−

w(F ), σi(C) = +

.

For each i ∈ [n], we have
∑

F∈F :
σi(F )=+

w(F ) =
∑

F∈F :
σi(F )=−

w(F ) = 1
2n since there is exactly one

face in the support of w with a “+” in the ith sign sequence coordinate and exactly one

face with a “−” in the ith coordinate.. Scaling by 2n, we see that the functions

ϕi(C) =


1, σi(C) = +

−1, σi(C) = −
, i = 1, ..., n

form a basis for the 1− 1
n eigenspace.

It should be mentioned that one can use the spectral decomposition of the transition

matrix for the chain viewed as a random walk on Zn2 to determine all of the eigenval-

ues/eigenfunctions in this particular case. The general technique was discovered by Peter

Matthews and is discussed at greater length in [21] as well at the end of subsection 3.3.2

in the present work. The basic idea is that for any random walk on a group which

is driven by a measure that is constant on conjugacy classes, the eigenvalues are given

by the diagonal entries of the Fourier transforms of the irreducible representations and

the eigenfunctions are given by the matrix entries of the corresponding representations.

Every random walk on Zn2 can be so decomposed since it is an abelian, group and the

computations are quite simple for the same reason. As an n-fold Cartesian product of
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the cyclic group of order 2, the irreducible representations of Zn2 are given by all pos-

sible n-fold products of ±1 and thus may be parameterized by ρx(y) = (−1)x·y as x

ranges over Zn2 . The lazy nearest-neighbor walk is driven by the measure Q (0) = 1
2 ,

Q
(
y(1)
)

= Q
(
y(n)

)
= 1

2n where y(i) ∈ Zn2 has ith coordinate 1 and all other coordinates

0, so, letting ω(x) denote the number of coordinates in x which are equal to 1, we compute

the Fourier transform of Q at the representation ρx as

Q̂(ρx) =
∑
y∈Zn2

(−1)x·yQ(y) =
1

2
+

1

2n

n∑
i=1

(−1)x·y
(i)

=
1

2
+

1

2n
[(n− ω(x))− ω(x)] = 1− ω(x)

n
,

in agreement with the eigenvalues deduced from Theorem 2.2.1. The corresponding eigen-

functions are the representations ρx(y) = (−1)x·y. In particular, the representations cor-

responding to the eigenvalue 1− 1
n are parametrized by those elements of Zn2 with exactly

one coordinate equal to 1, so a basis of for the (1− 1
n)-eigenspace is given by

ρy(i)(x) = (−1)y
(i)·x =


−1, xi = 1

1, xi = 0

, i = 1, ..., n.

Observe that ρy(i) = −ϕi under the obvious correspondence. Notice also that if y, y′ ∈ Zn2

agree in all coordinates i with xi = 1, then ρx(y) = (−1)x·y = (−1)x·y
′

= ρx(y′), and if

there is some set A ⊆ [n] such that yi = y′i for all i ∈ A implies ρx(y) = ρx(y′), then

it must be the case that A ⊇ {i ∈ [n] : xi = 1} - otherwise, there would exist some

j ∈ [n] \A with xj = 1, so, if y and y′ disagreed only in coordinate j, then we would have

yi = y′i for all i ∈ A, but ρx(y) = −ρx(y′). Finally, it is worth mentioning that these facts
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could also be deduced from Theorem 1.3.3 by taking Q to be uniform on the singletons

and taking Pi =

[
1
2

1
2

1
2

1
2

]
for i = 1, ..., n.

Each of these three techniques can also be used to analyze biased random walks on the

hypercube. For example, letting F±i denote the face with σi(F
±
i ) = ± and σj(F

±
i ) = 0 for

j 6= i, letting p±i ≥ 0 be such that p+
i + p−i > 0 and

∑n
i=1

(
p+
i + p−i

)
= 1, and defining w

by w(F±i ) = p±i , we see that for each i ∈ [n], the associated random walk on the Boolean

arrangement has eigenfunction

φi(C) =


−p+

i , σi(C) = −

p−i , σi(C) = +

corresponding to the eigenvalue λi = 1− p+
i − p

−
i .

As we have already obtained eigenfunctions for the militaristic models using the theory

of product chains, and the analysis via projections is not substantially different from the

the hypercube walks, we turn now to examples involving the braid arrangement. Before

doing so, however, it is worth noting that the eigenfunctions arising from single hyperplane

subarrangements can also be expressed in terms of indicators: Recall that for any random

walk on a central arrangement of m hyperplanes in Rn driven by a separating face measure

w, if we set pi =
∑

F∈F :
σi(F )=+

w(F ), qi =
∑

F∈F :
σi(F )=−

w(F ), λi =
∑

F∈F :
σi(F )=0

w(F ), then

φi(C) =


−pi, σi(C) = −

qi, σi(C) = +

is an eigenfunction of the transition operator with eigenvalue λi, i = 1, ...,m. It is often

more illuminating to write

φi(C) = (qi + pi)1{σi(C) = +} − pi

106



and divide by pi + qi = (1− λi) > 0 to obtain the eigenfunction

ϕi(C) = 1{σi(C) = +} − pi
pi + qi

.

In the case of the braid arrangement corresponding to Sn (the set of all
(
n
2

)
hyperplanes

of the form {x ∈ Rn : xi − xj = 0}), we saw in subsection 2.3.2 that the chambers are

in bijective correspondence with Sn via π ↔ Cπ = {x ∈ Rn : xπ(1) > xπ(2) > ... >

xπ(n)}. Moreover, the sign sequence of Cπ is related to the inversion set of π−1 under this

correspondence:

σ(i,j)(π) := σ(i,j)(Cπ) =


−, (i, j) ∈ Inv(π−1)

+, (i, j) /∈ Inv(π−1)

.

Similarly, the faces of the braid arrangement are in bijective correspondence with the

ordered set partitions of [n] with the partition (B1, ..., Bl) corresponding to the face

consisting of all points x such that xi = xj if i, j ∈ Br for some r = 1, ..., l and xi > xj

if i ∈ Br, j ∈ Bs for some 1 ≤ r < s ≤ l. The sign sequences, of the faces can thus be

represented as

σ(i,j) ((B1, ..., Bl)) : = σ(i,j)(F(B1,...,Bl))

=



−, i ∈ Bs, j ∈ Br for some 1≤r < s ≤ l

0, i, j ∈ Br for some 1≤r ≤ l

+, i ∈ Br, j ∈ Bs for some 1≤r < s ≤ l

.
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The set partitions act on permutations by (B1, ..., Bl)π = τ where τ(i) < τ(j) if and only

if i ∈ Br, j ∈ Bs for some 1 ≤ r < s ≤ l or i, j ∈ Br (r ∈ [l]) and π(i) < π(j). Thus, if

we identify the state space with Sn, then for each 1 ≤ i < j ≤ n, we have eigenfunctions

ϕ(i,j)(π) = 1
{

(i, j) /∈ Inv(π−1)
}
−

p(i,j)

p(i,j) + q(i,j)

= 1
{
π−1(i) < π−1(j)

}
−

p(i,j)

p(i,j) + q(i,j)

corresponding to the eigenvalue λ(i,j) where

q(i,j) =
∑
B`[n]:

j is in a block preceding i

w(B)

p(i,j) =
∑
B`[n]:

i is in a block preceding j

w(B)

λ(i,j) =
∑
B`[n]:

i and j are in a common block

w(B).

The fact that the top eigenfunctions of BHR walks on braid arrangements can be repre-

sented as shifted indicators of inversions is not only interesting from a theoretical view-

point, but has practical applications in the study of various permutation statistics using

Stein’s method techniques as we will see in subsection 3.3.2. Recalling the deck of cards

interpretation of random walks on the braid arrangement (where π(i) denotes the card

which is in the ith position from the top of the deck), we see that
{

(i, j) /∈ Inv(π−1)}
}

is the event that card i is above card j. Thus, from a card-shuffling standpoint, the top

eigenfunctions for these walks carry information about the pairwise relative ordering of

the cards. In a similar vein, if we conceive of the chambers as representing rankings of

alternatives (as alluded to at the end of subsection 2.3.2), then the top eigenfunctions are
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related to outcomes in head-to-head competitions, and thus could be used as a measure

of the degree to which the voting scheme we mentioned satisfies the Condorcet criterion.

Let us now consider examine some of the examples encountered in subsection 2.3.2.

We begin with the Tsetlin library, a model for dynamic file management. Here we are

given numbers w1, ..., wn ≥ 0 with
∑n

k=1wk = 1 and we define a measure w on F by

w(Fk) = wk for Fk ∼ ({k}, [n] \ {k}). The interpretation is that we have files 1, ..., n with

file k being accessed with probability wk (where wk is unknown to the user). We wish

to sort the files so that those used most frequently are arranged at the top of the files,

so we adopt the policy that every time a file is used it gets placed on top. The state of

the random walk after r steps corresponds to the order of the files after r files have been

accessed. We saw in subsection 2.3.2 that the eigenvalue corresponding to the hyperplane

H(i,j) is given by λ(i,j) = 1− wi − wj . Because σ(i,j)(F ) = + if and only the ordered set

partition corresponding to F is such that i and j belong to separate blocks and the block

containing i appears before the block containing j, we see that
∑

F∈F :
σ(i,j)(F )=+

w(F ) = wi.

By the exact same reasoning,
∑

F∈F :
σ(i,j)(F )=−

w(F ) = wj . Thus if we identify the state space

with Sn, then it follows from Theorem 3.1.1 that the corresponding eigenfunction is given

by

φ(i,j)(π) =


−wi, (i, j) ∈ Inv(π−1)

wj , (i, j) /∈ Inv(π−1)

.

In the case of (uniform) random-to-top shuffles, we have wk = 1
n for all k = 1, ..., n,

so after rescaling, we see that the functions {ϕ(i,j)}i<j defined as
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ϕ(i,j)(π) =


−1, (i, j) ∈ Inv(π−1)

1, (i, j) /∈ Inv(π−1)

are eigenfunctions for the random-to-top shuffle with eigenvalue 1− 2
n . It turns out that

the ϕ(i,j)’s are also eigenfunctions for the subdominant eigenvalue of inverse a-shuffles

(including ordinary riffle shuffles as the a = 2 case). Recall that a-shuffles can be realized

as walks on the braid arrangement driven by a face measure which is uniform over all

a-block partitions of [n], including those containing empty blocks. Accordingly, we have

∑
F∈F :

σ(i,j)(F )=+

w(F ) =
∑
F∈F :

σ(i,j)(F )=+

1

an
=

∑
F∈F :

σ(i,j)(F )=−

1

an
=

∑
F∈F :

σ(i,j)(F )=−

w(F )

(since interchanging i and j gives a bijection between partitions with i in a block preced-

ing that containing j and those where j appears first), hence ϕ(i,j) is an eigenfunction

corresponding to λ(i,j) = 1
a for each 1 ≤ i < j ≤ n. Note that for both the inverse

a-shuffles and the uniform random-to-top shuffles, the face measures are invariant under

the action of Sn, and thus correspond to random walks on the symmetric group in the

usual sense. As a random walk on a group has an inverse whose transition matrix is just

the transpose of the original transition matrix, the right eigenvectors of these inverse-

shuffle hyperplane walks are the left eigenvectors of the corresponding shuffles. Thus

a-shuffles and top-to-random shuffles have subdominant left eigenspaces spanned by the

above shifted indicators of inversions. As discussed in [32], this suggests the possibility of

using these eigenfunctions to study the associated quasi-stationary distributions of these

shuffles.
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It should be noted that Diaconis, Pang, and Ram were able to represent inverse a-

shuffles in terms of the Hopf square (coproduct-then-product) map on the free associative

algebra with respect to its word basis, and then use Hopf algebra techniques to find the left

eigenfunctions of the transition matrix. They showed that a basis for the 1
a left-eigenspace

is given by {fij}1≤i<j≤n where

fij(π) =



1, ij is a subword of π

−1, ji is a subword of π

0, else

and then deduce that if d(π) = |{i ∈ [n− 1] : π(i) > π(i+ 1)}|, the number of descents in

π, then f(π) = n−1−2d(π) is a left eigenfunction for the inverse a-shuffle with eigenvalue

1
a . See [32] for more on this fascinating approach.

Our results for random-to-top shuffles and inverse a-shuffles show that g(π) = f(π−1)

is a right eigenfunction for the subdominant eigenvalues of these chains. More generally,

for each 1 ≤ d < n, we can define the number of d-descents of a permutation π ∈ Sn by

Desd(π) =
∣∣{(i, j) ∈ [n]2 : i < j ≤ i+ d, π(i) > π(j)}

∣∣ .
These permutation statistics first appeared in [18] where they were related to the Betti

numbers of Hessenberg varieties, and generalize the notions of descents and inversions

of a permutation (corresponding to d = 1 and d = n respectively). We claim that the

function Desd(π
−1) (when normalized to have mean zero under the uniform distribution

on Sn) is an eigenfunction corresponding to the second largest eigenvalues of each of these
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chains. To see that this is the case, we first observe that for n ≥ 2, 1 ≤ d < n, the number

of (i, j) ∈ [n]2 with i < j ≤ i+ d is

Nn,d = d(n− d) + (d− 1) + (d− 2) + ...+ 2 + 1 =
2nd− d2 − d

2
.

Note that under the uniform distribution on Sn, each pair each pair (i, j) with i < j has

probability 1
2 of being an inversion, so the expected number of d-descents in a random

permutation is 1
2Nn,d. Now, writing

Ascd(π) =
∣∣{(i, j) ∈ [n]2 : i < j ≤ i+ d, π(i) < π(j)}

∣∣ = Nn,d −Desd(π)

for the number of d -ascents of π, we have

∑
1≤i<j≤min(n,i+d)

ϕ(i,j)(π) = Ascd(π
−1)−Desd(π

−1) = Nn,d − 2Desd(π
−1),

hence

Desd(π
−1)− 1

2
Nn,d = −1

2

∑
1≤i<j≤min(n,i+d)

ϕ(i,j)(π)

is an eigenfunction for both the the random-to-top and inverse a-shuffle chains. Special-

izing to the case d = 1 and using the fact that a permutation has r rising sequences if

and only if its inverse has has r− 1 descents, so that the number of rising sequences in π

is R(π) = Des1(π−1) + 1, we have the corollary that

R(π)− n+ 1

2
= R(π)− 1− 2n− 2

4
= Des1(π−1)− 1

2
Nn,1

is also an eigenfunction. Similarly, since the number of inversions in a permutation is the

same as the number of inversions in its inverse, taking d = n− 1 shows that

Inv(π)− n2 − n
4

= Inv(π−1)− n2 − n
4

= Desn−1(π−1)− 1

2
Nn,n−1
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is an eigenfunction of these inverse shuffles as well.

Before moving on, we note that there are many other walks on the braid arrangement

which have eigenfunctions ϕ(i,j). For example, we could take the face measure to be

uniform over all two-block partitions (S, [n] \S) such that |S| = m. The interpretation is

that we choose m cards at random and then move them to the front of the deck, retaining

their original order. We will call these random-m-set-to-top shuffles. For each hyperplane

H(i,j) = {xi = xj}, we have

λ(i,j) =
∑
F∈F:
F⊆Hi

w(F ) = 1−
∑
F∈F:

F*Hi

w(F ) = 1−
2
(
n−2
m−1

)(
n
m

) = 1− 2
m(n−m)

n(n− 1)

since there are
(
n
m

)
faces in the support of F (one corresponding to each S ⊂ [n] with

|S| = m) and the number of such faces in which i and j belong to different blocks is twice

the number of faces where i’s block proceeds j’s (as seen by the map which interchanges i

and j), of which there are
(
n−2
m−1

)
, the number of ways of choosing the other m−1 elements

in the first block. Arguing as in the inverse a-shuffle case, we see that the functions

{ϕ(i,j)}1≤i<j≤n are eigenfunctions for this eigenvalue as well, and so the statements about

d-descents are also applicable in this case. Similarly, we could consider the inverse of the

top-m-to-random shuffles studied in [24]. These are driven by probability measures which

are constant over all (m+ 1)-block partitions where the first m blocks are singleton sets.

For all 1 ≤ i < j ≤ n, we have the eigenvalue

λ(i,j) =

(
n−2
m

)(
n
m

) =
(n−m)(n−m− 1)

n(n− 1)

as there are a total of m!
(
n
m

)
equiprobable faces, m!

(
n−2
m

)
of which have i and j in

a common block. Again, the interchange i and j argument shows that corresponding
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eigenfunctions are given by {ϕ(i,j)}i<j . Yet another example in which the ϕ(i,j)’s arise as

eigenfunctions for the subdominant eigenvalue is given by taking the face measure to be

uniform over all two-block partitions in which one of the blocks has size 1. The inverse of

this shuffle corresponds to picking a card at random and then flipping a fair coin to decide

whether to put it on the top or bottom of the deck. Of course this reasoning applies to all

walks on the braid arrangement driven by a probability measure which is constant over

set partitions of a given shape.

In fact, it is not even necessary that the face measure is uniform over partitions with

the same shape; it needs only to be invariant under pairwise transposition of elements.

For example, consider the inverse of the biased a-shuffles. Here we let p1, ..., pa > 0

be such that
∑a

j=1 pj = 1 and define a measure on the faces corresponding to a-block

partitions by

w ((B1, ..., Ba)) =
a∏
j=1

p
|Bj |
j

As this measure satisfies w(F ) = w(τF ) for all transpositions τ ∈ Sn, reasoning as before

shows that ϕ(i,j) is an eigenfunction for the eigenvalue λ(i,j) for each i < j. To compute

this eigenvalue, we observe that for each ordered partition of [n] \ {i, j} into a blocks we

can add {i, j} to any of the blocks to obtain an ordered partition of [n] into a blocks

where i and j lie in a common block. Thus it follows from the multinomial theorem that

λ(i,j) =
∑

(B1,...,Ba)`[n]\{i,j}

(
a∑
l=1

p2
l

a∏
k=1

p
|Bk|
k

)

=
a∑
l=1

p2
l

 ∑
(B1,...,Ba)`[n]\{i,j}

a∏
k=1

p
|Bk|
k
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=

a∑
l=1

p2
l

 ∑
b1+...+ba=n−2

(
n− 2

b1, ..., ba

) a∏
k=1

p
|Bk|
k

 =

a∑
l=1

p2
l .

Our next task is to show that in each of the preceding examples, {ϕ(i,j)}i<j actually

forms a basis for the eigenspace corresponding to the subdominant eigenvalue. We first

note that since transpositions generate Sn, invariance of w under the action of trans-

positions on faces is equivalent to invariance of w under the action of Sn - the former

is merely easier to check. We have seen that this condition guarantees that ϕ(i,j) is an

eigenfunction corresponding to λ(i,j), and multiplying by −1
2 shows that

φ(i,j)(π) = 1{(i, j) /∈ Inv(π−1)} − 1

2
= 1{π−1(i) < π−1(j)} − 1

2

is also such an eigenfunction. By the remarks at the beginning of section 2.3, all such

hyperplane walks actually correspond to random walks on Sn in the standard sense.

Moreover, invariance also implies that for all (i, j), (k, l) ∈ {(a, b) ∈ [n]2 : a < b}, we have

λ(i,j) =
∑
F∈F:

σ(i,j)(F )=0

w(F ) =
∑
F∈F:

σ(i,j)(F )=0

w(τj,lτi,kF ) =
∑
F∈F:

σ(k,l)(F )=0

w(F ) = λ(k,l)

where τa,b is the permutation which transposes a and b. In addition, if w is not the point

mass at the origin, then it must be the case that w is separating. This is because the

origin corresponds to the one block partition 0 ∼ ([n]), so if w(0) < 1, then there is some

face F ∼ (B1, ..., Bl) with l > 1 and w(F ) > 0, hence there is a pair (i, j) ∈ [n]2 with

i ∈ B1, j ∈ B2 and thus σ(i,j)(F ) 6= 0. By invariance, for any (k, l) ∈ [n]2, F ′ = τi,kτj,lF

satisfies σ(k,l)(F
′) 6= 0 and w(F ′) = w(F ) > 0. Finally, under the preceding assumptions,

we claim
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Lemma 3.2.1. If w is not concentrated on C and n 6= 4, then it cannot be the case that

there exist (i, j) 6= (k, l) such that σ(k,l)(F ) = 0 for all F ∈ F with σ(i,j)(F ) = 0 and

w(F ) > 0.

Proof. This is vacuously true if n = 2. If n = 3, then the fact that w is not supported

on C ∪ {0} implies that there is a face F ∼ (B1, B2) with w(F ) > 0 and either B1 or B2

has 2 elements. By invariance, we can take {i, j} as the two-element block. We may thus

assume that n > 4. Now the assumption that the support of w is not contained in C∪{0}

implies that there is some F ∼ (B1, ..., Bl) with w(F ) > 0, l > 1, and maxr∈[l] |Br| > 1.

Let s = argmaxr∈[l] |Br|. By invariance, we may assume that i, j ∈ Bs. Also, we may

suppose without loss of generality that k 6= i, j (as it cannot be the case that both k

and l are in {i, j} and the ensuing argument does not depend on the relative ordering of

k and l). If |Bs| = 2, then there are at least two other blocks and either l ∈ {i, j}, so

σ(k,l)(F ) 6= 0, or l /∈ {i, j} and we can use invariance to transpose k with an element which

is not in the block containing l to obtain a partition with positive measure in which k

and l lie in different blocks. If |Bs| > 2, then arguing as before, we can obtain a partition

having positive measure with i, j, l ∈ Bs (possibly because l ∈ {i, j}) and k /∈ Bs.

It will follow that the multiplicity of the eigenvalue corresponding to a single hy-

perplane is
(
n
2

)
and thus the functions {ϕ(i,j)}1≤i<j≤n are a basis for the eigenspace

corresponding to the subdominant eigenvalue (because we have already established that

{ϕ(i,j)}1≤i<j≤n is a linearly independent set of such eigenfunctions). Clearly the multi-

plicity is at least
(
n
2

)
since each of the hyperplanes contributes such an eigenvalue. To see

that the multiplicity of the subdominant eigenvalue is no more than
(
n
2

)
, we observe that
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if it were, then there would exist a flat W > V which strictly contains some hyperplane

H(i,j) and satisfies λW = λ(i,j). But it follows from Lemma 3.2.1 that for all (k, l) 6= (i, j),

there is a face F with σ(i,j)(F ) = 0, σ(k,l)(F ) 6= 0, and w(F ) > 0. Accordingly, letting

(k, l) ∈ AW \ {(i, j)} 6= Ø, there is a G ∈ F with σ(i,j)(G) = 0, σ(k,l)(G) 6= 0, and

w(G) > 0, so that

λ(i,j) =
∑
F∈F:

σ(i,j)(F )=0

w(F ) >
∑
F∈F:

σ(i,j)(F )=0

w(F )− w(G)

≥
∑
F∈F:

σ(r,s)(F )=0∀(r,s)∈AW

w(F ) = λW .

Accordingly, the preceding examples are all special cases of

Theorem 3.2.1. If w is a probability measure on the faces of the braid arrangement

which is invariant under multiplication by transpositions, then the hyperplane chamber

walk driven by w corresponds to a random walk on Sn. If w(0) < 1, then the functions

ϕ(i,j)(π) =


−1, (i, j) ∈ Inv(π−1)

1, (i, j) /∈ Inv(π−1)

, 1 ≤ i < j ≤ n

are linearly independent eigenfunctions corresponding to the subdominant eigenvalue. If

w is not supported on C ∪ {0} and n 6= 4, then {ϕ(i,j)}1≤i<j≤n forms a basis for the

eigenspace corresponding to the subdominant eigenvalue. An equivalent basis is given by

{φ(i,j)}1≤i<j≤n with

φ(i,j)(π) = 1{π−1(i) < π−1(j)} − 1

2
.

It is interesting to note that this eigenspace contains all of the information about the

state of the chain in the sense that if one knows the value of φ(i,j)(πk) for all 1 ≤ i < j ≤ n,
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then one knows πk. In the case of the braid arrangement, this is because a permutation

is uniquely determined by its inversion set. More generally, the simultaneous values of

the eigenfunctions corresponding to hyperplanes specify the sign sequence coordinates of

the chamber at which they are evaluated.

We conclude this subsection with a computation of the eigenfunctions for the ran-

dom walk on the dihedral arrangement discussed in subsection 2.3.3. This arrange-

ment consists of 2m equally spaced lines through the origin in R2 where we have cho-

sen to label the m hyperplanes by Hi = {(r, θ) : r ∈ R, θ = πi
m}, the 2m cham-

bers by Cj =
{

(r, θ) : r > 0, θ ∈
(
π(j−1)
m , πjm

)}
, and the 2m one-dimensional faces by

Rj =
{

(r, θ) : r > 0, θ = π(j−1)
m

}
, so that the sign sequences of the faces are given by

σi(Cj) =


+, j ≤ i or m+ i < j

−, else

,

σi(Rj) =



+, j < i or m+ i < j

0, i = j or i+m = j

−, else

,

σ({0}) = (0, ..., 0).

We restrict our attention to walks driven by measures supported on the one-dimensional

faces which are not concentrated on any single hyperplane - that is, w is defined by

w(Rj) = pj for j = 1, ..., 2m where pj ≥ 0,
∑2m

j=1 pj = 1, and pi+pi+m < 1 for i = 1, ...,m.

We have already determined that the eigenvalues are given by λV = 1 with multiplicity

1, λ{0} = 0 with multiplicity m− 1, λHi = pi + pi+m with multiplicity 1 for i = 1, ...,m.

118



By Theorem 3.1.1 (using −φi) and the above characterization of the sign sequences, we

see that for each j ∈ [2m], i ∈ [m], the eigenfunction corresponding to λHi is given by

φi(Cj) =


∑
k<i

pk +
∑

k>m+i

pk, j < i ≤ m+ i

−
∑

i<k<m+i

pk, otherwise

.

3.3 Applications

In section 2.1 of [32], the authors mention several uses for Markov chain eigenfunctions.

The first involves writing functions defined on the state space as linear combinations

of eigenfunctions, f =
∑

i αiϕi, so that the expectation of f under P kx can be easily

computed as E[f(Xk)|X0 = x] =
∑

i αiλ
k
i ϕi(x). When P is diagonalizable, every function

on the state space can be so expressed. Moreover, if P is reversible with respect to the

stationary distribution π, then the eigenfunctions may be chosen to form an orthonormal

basis for L2(π) - the space {f : S → R} with inner product 〈f, g〉π =
∑

x∈S f(x)g(x)π(x)

- so that αi = 〈f, ϕi〉π.

As an example, recall that ψ(π) = Desd(π
−1)− 2nd−d2−d

4 is an eigenfunction for both

the inverse a-shuffle and the random-to-top shuffle with eigenvalues λ = 1
a and λ = 1− 2

n ,

respectively. Accordingly, letting {Xk} denote a generic representative of these chains,

we have

E[ψ(Xk) +
2nd− d2 − d

4
|X0 = id] = λkψ(id) +

2nd− d2 − d
4

= λk
(

Desd(id)− 2nd− d2 − d
4

)
+

2nd− d2 − d
4

= (1− λk)2nd− d2 − d
4

.
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Thus if P k∗ denotes the distribution of a permutation π after k inverse shuffles of an

ordered deck of cards, and P k denotes the distribution after k forward shuffles of an

ordered deck, then

(1− λk)2nd− d2 − d
4

= EPk∗ [Desd(π
−1)] =

Nn,d∑
j=0

jP k∗
(
{Desd(π

−1) = j}
)

=

Nn,d∑
j=0

j
∑
σ∈Sn

1{Desd(σ
−1) = j}P k∗ (σ)

=

Nn,d∑
j=0

j
∑
σ∈Sn

1{Desd(σ
−1) = j}P k

(
σ−1

)

=

Nn,d∑
j=0

j
∑
τ∈Sn

1{Desd(τ) = j}P k (τ)

=

Nn,d∑
j=0

jP k ({Desd(π) = j}) = EPk [Desd(π)].

Accordingly, we have the following result.

Proposition 3.3.1. Beginning with an ordered deck of n cards

• The expected number of d-descents after k a-shuffles is (1− a−k)2nd−d2−d
4 .

• The expected number of d-descents after k top-to-random shuffles is[
1−

(
1− 2

n

)k] 2nd−d2−d
4 .

Similar arguments can be used to compute the expectation of other permutation

statistics of these shuffles (and many of their relatives) which can be expressed as linear

combinations of indicators of inversions of inverses. We can also use this technique to

compute the expected number of rising sequences and inversions in the corresponding

inverse shuffles.

Proposition 3.3.2. Beginning with an ordered deck of n cards
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• The expected number of rising sequences after k inverse a-shuffles is

n+1
2 − a

−k (n−1
2

)
.

• The expected number of rising sequences after k random-to-top shuffles is

n+1
2 −

(
1− 2

n

)k (n−1
2

)
.

• The expected number of inversions after k inverse a-shuffles is

(1− a−k)n2−n
4 .

• The expected number of inversions after k random-to-top shuffles is[
1−

(
1− 2

n

)k] n2−n
4 .

The above should be contrasted with Brad Mann’s (apparently laborious) calculation

of the expected number of rising sequences after k a-shuffles [49]:

EPka [R] = ak − n+ 1

ank

ak−1∑
r=0

rn.

Descents and inversions after riffle shuffles have been studied previously in [37, 30, 44],

and it is perhaps enlightening to compare the various approaches taken to establish re-

sults along the lines of Proposition 3.3.1. Note also that Propositions 3.3.1 and 3.3.2

demonstrate the relation of the subdominant eigenvalue to the rate of convergence of

these shuffles as measured by such statistics.

Other uses for eigenfunctions mentioned in [32] include expressing k-step transition

probabilities in terms of left and right eigenfunctions and their corresponding eigenvalues;

using martingale methods to study the chain via the sequence Yk = 1
λki
ϕi(Xk); examining

k-step self-correlations of eigenfunctions for the chain started in equilibrium; using left
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eigenfunctions to study time-reversed chains and quasi-stationary distributions; and ex-

ploiting the fact that left and right eigenfunctions corresponding to different eigenvalues

are orthogonal. (This latter fact can be used to show that a necessary condition for a

sequence of ergodic Markov chains {X(n)
k } with total variation mixing times t

(n)
mix and

absolute spectral gaps γn to exhibit the cutoff phenomenon is that limn→∞ γnt
(n)
mix =∞.

Proofs which assume that the chains are reversible can be found in [33, 48], but if one

replaces the term 〈f, 1〉π with 〈f, π〉 in these proofs and uses the orthogonality of left

and right eigenfunctions, then the reversibility assumption can be dropped.) In the rest

of this section, we consider two other uses for Markov chain eigenfunctions: bounding

mixing times and applications to Stein’s method computations.

3.3.1 Mixing Time Bounds

3.3.1.1 Wilson’s Method and Lower Bounds

We have already mentioned that eigenfunctions can be used to obtain lower bounds on

the k-step distance to stationarity via the method of distinguishing statistics and the use

of Wilson’s technique. The general idea behind this approach is to use the fact that for

any subset B of the state space, one has
∣∣P kx (B)− π(B)

∣∣ ≤ maxA⊆S
∣∣P kx (A)− π(A)

∣∣ =∥∥P kx − π∥∥TV . The method of distinguishing statistics employs this bound with the event

B = {x : φ(x) ≤ α} for some constant α and some function φ. Typically, φ is taken

to be an eigenfunction of P so that one can estimate the first two moments of φ(X) for

X ∼ P kx and X ∼ π, and bound the probability of B under P kx and π using Chebychev’s

inequality. Examples of direct computations using this idea can be found in [21, 40].
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In general, if φ is a real-valued right eigenfunction of P with eigenvalue λ, then

EPkx [φ(X)] =
∑
y∈S

P k(x, y)φ(y) =
(
P kφ

)
(x) = λkφ(x),

and if λ 6= 1, then Eπ[φ(X)] =
∑

y∈S π(y)φ(y) = 〈π, φ〉 = 0 since π is a left eigenfunc-

tion of P with eigenvalue 1 6= λ. To estimate the variance of φ(X) under P kx and π,

respectively, we can often appeal to the following argument due to David Wilson [70].

Suppose that φ is a right eigenfunction of P with eigenvalue (1− γ) where 0 < γ < 1,

and let

R ≥ E
[

(ϕA(X1)− ϕA(y))2
∣∣∣X0 = y

]
for all y ∈ S. Let X0 = x denote the initial state of the chain. By induction, we have

that E[φ(Xt)] = (1− γ)tφ(x). Also,

E[φ(Xt+1)2|Xt] = E
[
(φ(Xt+1)− φ(Xt))

2 + 2φ(Xt+1)φ(Xt)− φ(Xt)
2|Xt

]
≤ R+ 2φ(Xt)E[φ(Xt+1)|Xt]− φ(Xt)

2

= R+ 2φ(Xt)(1− γ)φ(Xt)− φ(Xt)
2

= R+ (1− 2γ)φ(Xt)
2,

hence

E[φ(Xt+1)2] = E
[
E[φ(Xt+1)2|Xt]

]
≤ R+ (1− 2γ)E

[
φ(Xt)

2
]
.

Solving this recursive inequality yields

E[φ(Xt)
2] ≤ (1− 2γ)tφ(x)2 +R

t−1∑
i=0

(1− 2γ)i
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= (1− 2γ)tφ(x)2 +R
1− (1− 2γ)t

2γ
,

so that

Var (φ(Xt)) = E[φ(Xt)
2]− E[φ(Xt)]

2

≤ φ(x)2
[
(1− 2γ)t − (1− γ)2t

]
+
R

2γ

[
1− (1− 2γ)t

]
.

Since γ ∈ (0, 1) and P kx ⇒ π, letting t→∞ gives

Varπ(φ(X)) = lim
t→∞

Var (φ(Xt)) ≤
R

2γ
.

If we impose the additional constraint 0 < γ ≤ 1
2 , then a bit of algebra shows that

(1− 2γ)t − (1− γ)2t ≥ 0 and thus Var (φ(Xt)) ≤ R
2γ for all t. (The inequality (1− 2γ)t −

(1 − γ)2t ≥ 0 actually holds for all t whenever γ ≤ 2 −
√

2, but one also has to worry

about the (1− 2γ)t term if t is odd and γ > 1
2 .)

This method of bounding the variance is known as Wilson’s technique and is recorded

in the following lemma[70].

Lemma 3.3.1 (Wilson). Suppose that {Xk}∞k=0 is an ergodic Markov chain with state

space S, transition matrix P , and stationary distribution π. If φ is a right eigenfunction

for P with eigenvalue (1− γ) for some γ ∈ (0, 1
2 ] and there is some number R <∞ such

that

E
[

(φ(X1)− φ(x))2
∣∣∣X0 = x

]
≤ R

for all x ∈ S, then

Varπ (φ(X)) ,VarPkx (φ(X)) ≤ R

2γ

for every x ∈ S, k ∈ N.
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By taking the modulus of various terms when appropriate, the above argument car-

ries over directly to complex valued eigenfunctions/eigenvalues. There are also various

extensions of Wilson’s theorem which allow for test functions which are not quite eigen-

functions [45] and for linear combinations of eigenfunctions under certain nonpositive

covariance assumptions [46]. One uses these results to obtain lower bounds on the vari-

ation distance by bounding the probability of events of the form B = {x : φ(x) ≤ α}

under the respective probabilities using Chebychev’s inequality. Another possibility is to

use a linear combination of eigenfunctions as a test statistic to obtain bounds using Wil-

son’s technique with concentration inequalities rather than Chebychev, though the issue

of dependence makes this difficult in general. Also, one may be able to get improved

bounds using Wilson’s technique and the following variation bound from [48] in place of

Chebychev’s inequality.

Lemma 3.3.2. Let µ and ν be probability distributions on Ω and let f be a real val-

ued function on Ω. If |Eµ(f)− Eν(f)| ≥ rσ where σ2 = 1
2 [Varµ(f) + Varν(f)], then

‖µ− ν‖TV ≥ 1− 4
4+r2 .

With the preceding results in hand, we are in a position to find lower bounds on the

convergence rates of some hyperplane chamber walks. We will concentrate on random

walks on the braid arrangement which satisfy the conditions of Theorem 3.2.1. For these

chains, an eigenbasis for the subdominant eigenvalue is given by

φ(i,j)(π) = 1{π−1(i) < π−1(j)} − 1

2
, 1 ≤ i < j ≤ n,
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thus for any A ⊆ {(i, j) ∈ [n]2 : i < j}, the function

ϕA(π) =
∑

(i,j)∈A

φ(i,j)(π)

is also such an eigenfunction. In order to lower-bound the mixing time of these chains in

terms of ϕA, it is necessary to upper-bound

max
x∈S

E
[

(ϕA(X1)− ϕA(x))2
∣∣∣X0 = x

]
.

Now for any π0 ∈ Sn, let π ∼ Pπ0 (the distribution after a single step in the chain starting

at π0) and set

X(i,j) = X(i,j)(π) = 1{π−1(i) < π−1(j)} − 1{π−1
0 (i) < π−1

0 (j)}.

Then

E
[
(ϕA(π)− ϕA(π0))2

]
= E

 ∑
(i,j)∈A

(
1{π−1(i) < π−1(j)} − 1{π−1

0 (i) < π−1
0 (j)}

)2
=

∑
(i,j)∈A

E
[
X2

(i,j)

]
+ 2

∑
(i,j),(k,l)∈A:

(i,j)<(k,l)

E
[
X(i,j)X(k,l)

]

where the pairs are ordered lexicographically. We will assume henceforth that n > 4.

Using the card shuffling interpretation of the chain, we see that X(i,j) = −1 if card i

precedes card j originally and card j is moved above card i after a shuffle, X(i,j) = 1 if

card i follows card j originally and is card i is moved above card j after a shuffle, and

X(i,j) = 0 if cards i and j maintain their relative order after a shuffle. Thus X2
(i,j) = 1

if the relative ordering of cards i and j changes after a shuffle and X2
(i,j) = 0 if cards i
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and j maintain their relative order after a shuffle. Since the face measure is invariant

under transpositions, the probability that i and j maintain their original relative orders is

independent of the initial state π and is the same for all pairs (i, j). Thus for all (i, j) ∈ A,

E
[
X2

(i,j)

]
= P

(
X2

(i,j) = 1
)

= P
(
E(1,2)

)
where E(1,2) is the event that the relative orders

of cards 1 and 2 change after a shuffle. Now consider the terms E
[
X(i,j)X(k,l)

]
with

(i, j) < (k, l). If either cards i and j or cards k and l retain their original order after a

shuffles, then X(i,j)X(k,l) = 0, and the probability of this occurring does not depend on

the initial configuration of the deck since, for example, the probability that i is moved in

front of j is the same as the probability that j is moved in front of i by invariance. If both

pairs of cards change their relative order, then X(i,j)X(k,l) = ±1. Moreover, in order for

X(i,j)X(k,l) = −1, it must be the case that either card i initially preceded card j or card

k initially preceded card l. The initial state maximizing E
[

(ϕA(X1)− ϕA(x))2
∣∣∣X0 = x

]
is thus π0 = πrev defined by πrev(k) = n − k + 1. In this case, E(1,2) is the event that a

shuffle moves card 1 in front of card 2. By invariance, this is the same as the probability

that card 2 is moved in front of card 1, so, since the sum of these two probabilities is

1 − λ(1,2) = 1 − λ, E
[
X2

(i,j)

]
= P

(
E(1,2)

)
= 1−λ

2 . Thus, taking π ∼ Pπrev , and letting

E(i,j),(k,l) = {π−1(i) < π−1(j), π−1(k) < π−1(l)} be the event that the relative orders of

cards i and j and cards k and l both change after a single shuffle of the reverse-ordered

deck, we see that

R = E
[
(ϕA(π)− ϕA(πrev))

2
]

=
∑

(i,j)∈A

E
[
X2

(i,j)

]
+ 2

∑
(i,j),(k,l)∈A:

(i,j)<(k,l)

E
[
X(i,j)X(k,l)

]

= |A| 1− λ
2

+ 2
∑

(i,j),(k,l)∈A:

(i,j)<(k,l)

P
(
E(i,j),(k,l)

)
.

127



At this point, we note that the additional constraints i < j, k < l allow only for the

following orderings of the indices: 1) i < j < k < l; 2) i < k < j < l; 3) i < k < l < j;

4) i < k < j = l; 5) i < j = k < l; 6) i = k < j < l. In the first three cases (where the

indices are all distinct), it follows from invariance that

P
(
E(i,j),(k,l)

)
= P

(
E(1,2),(3,4)

)
=

∑
F∈F:

σ(1,2)(F )=σ(3,4)(F )=+

w(F ).

In case 4, invariance implies that

P
(
E(i,j),(k,j)

)
= P

(
E(1,3),(2,3)

)
=

∑
F∈F:

σ(1,3)(F )=σ(2,3)(F )=+

w(F ).

Similarly, in case 5 we have

P
(
E(i,j),(j,l)

)
= P

(
E(1,2),(2,3)

)
=

∑
F∈F:

σ(1,2)(F )=σ(2,3)(F )=+

w(F ),

and in case 6 we have

P
(
E(i,j),(i,l)

)
= P

(
E(1,2),(1,3)

)
=

∑
F∈F:

σ(1,2)(F )=σ(1,3)(F )=+

w(F )

Therefore, writing

A1 =
{

((i, j), (k, l)) ∈ A2 : i, j, k, l are distinct
}
,

A2 =
{

((i, j), (k, l)) ∈ A2 : i < k < j = l
}
,

A3 =
{

((i, j), (k, l)) ∈ A2 : i < j = k < l
}
,

A4 =
{

((i, j), (k, l)) ∈ A2 : i = k < j < l
}
,

we have
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R = |A| 1− λ
2

+ 2
∑

(i,j),(k,l)∈A:

(i,j)<(k,l)

P
(
E(i,j),(k,l)

)

= |A| 1− λ
2

+ 2 |A1|
∑
F∈F:

σ(1,2)(F )=σ(3,4)(F )=+

w(F ) + 2 |A2|
∑
F∈F:

σ(1,3)(F )=σ(2,3)(F )=+

w(F )

+ 2 |A3|
∑
F∈F:

σ(1,2)(F )=σ(2,3)(F )=+

w(F ) + 2 |A4|
∑
F∈F:

σ(1,2)(F )=σ(1,3)(F )=+

w(F ).

One can show that
∑

F∈F:

σ(1,2)(F )=σ(3,4)(F )=+
w(F ) =

1−2λ+λH(1,2)∩H(3,4)

4 using invariance and

inclusion-exclusion, but since this does not generally simplify computations and the ar-

guments do not carry over to the cases where the indices are not all distinct, we omit

this fact in our description of R. Before moving on to specific examples, we note that the

above decomposition can be quite helpful in deciding how to choose A both in terms of

achieving optimal bounds and in reducing the amount of computations needed.

At this point, we turn our attention to the random-to-top shuffle. We have already

seen that the subdominant eigenvalue is given by λ = 1− 2
n . Because the face measure is

supported on two-block partitions where the first block is a singleton, it is clear that there

are no faces F with w(F ) > 0 and σ(1,2)(F ) = σ(3,4)(F ) = +, σ(1,3)(F ) = σ(2,3)(F ) = + or

σ(1,2)(F ) = σ(2,3)(F ) = +. Moreover, the only face in the support of w with σ(1,2)(F ) =

σ(1,3)(F ) = + is F ∼ ({1}, [n] \ {1}), which has weight w(F ) = 1
n . Consequently, for any

choice of A, we have

R =
|A|
n

+ 2 |A4|
∑
F∈F:

σ(1,2)(F )=σ(1,3)(F )=+

w(F ) =
|A|+ 2 |A4|

n
.
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If we take A = {(i, j) ∈ [n]2 : i < j}, then |A| =
(
n
2

)
and |B4| =

(
n
3

)
, hence R = 2n2−3n+1

6 ,

so, since γ = 1− λ = 2
n , Wilson’s method gives

Varπ(ϕA),VarPk(ϕA) ≤ R

2γ
=

2n3 − 3n2 + n

24
.

For this choice of A, −ϕA is the number of inversions normalized to have mean 0 under

the uniform distribution on Sn, and it is easy to show that the number of inversions in a

random permutation has variance 2n3+3n2−5n
72 , so our estimate has the correct order. As

this bound is independent of the initial state and so is the mixing time, it suffices to assume

that the chain starts at the identity. In this case, using the fact that log(1−x) ≥ −x−x2

for 0 ≤ x ≤ 1
2 , we have

∣∣∣EPkid [ϕA]− Eπ[ϕA]
∣∣∣ =

∣∣∣∣∣
(

1− 2

n

)k
ϕA(id)

∣∣∣∣∣ =

(
1− 2

n

)k n(n− 1)

4

= exp

[
k log

(
1− 2

n

)]
n(n− 1)

4

≥ exp

[
−2k

n

(
n+ 2

n

)]
n(n− 1)

4

and, since we are assuming that n > 4,

σ2 =
1

2

(
VarPkid

(ϕA) + Varπ (ϕA)
)
≤ 1

2

(
2n3 − 3n2 + n

24
+

2n3 + 3n2 − 5n

72

)
=

4n3 − 3n2 − n
72

≤ 6n3 − 12n2 + 6n

72
=
n(n− 1)2

12
,

so we can take

r =
exp

[
−2k

n

(
n+2
n

)] n(n−1)
4√

n(n−1)2

12

=

√
3

2
exp

[
−2k

n

(
n+ 2

n

)]√
n

=

√
3

2
exp

[
−2k

n

(
n+ 2

n

)
+

log(n)

2

]
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in the statement of Lemma 3.3.2, to obtain

∥∥∥P k − π∥∥∥
TV ∗

=
∥∥∥P kid − π∥∥∥

TV
≥ 1− 4

4 + r2
≥ 1− 4r−2

≥ 1− 16

3
exp

[
4k

n

(
n+ 2

n

)
− log(n)

]
.

Taking k = 1
4n log(n) − cn for any c > 0 yields

∥∥P k − π∥∥
TV ∗

≥ 1 − 16
3 e
−4c+1, so the

mixing time for the random-to-top (and thus for the top-to-random) shuffle is at least

1
4n log(n). It is known that the true mixing time for the random-to-top shuffle is n log(n),

so the bound from Wilson’s method is off by a factor of 4.

The same general analysis also applies for the random-m-set-to-top shuffles where m

is some fixed number which is small relative to n. It was shown in section 3.2 that the

subdominant eigenvalue for these chains is λ = 1− 2m(n−m)
n(n−1) . We first observe that since

the face measure is supported on two-block partitions, there is no F in the support of

w with σ(1,2)(F ) = σ(2,3)(F ) = +. Also, in order to avoid dealing with the sums over

A2 and A4, we will take A = {(i, i + 1), i = 1, ..., n − 1}, so that −ϕA(π) is the number

of rising sequences in π standardized to have mean zero under the uniform distribution.

Finally, simple counting arguments show that

∑
F∈F:

σ(1,2)(F )=σ(3,4)(F )=+

w(F ) =

(
n−4
m−2

)(
n
m

) =
m(m− 1)(n−m)(n−m− 1)

n(n− 1)(n− 2)(n− 3)

and

|A1| =
n−2∑
i=1

(n− i− 2) =
(n− 2)(n− 3)

2
.

Accordingly, we have the bound

R =
m(n−m)

n
+ 2

m(m− 1)(n−m)(n−m− 1)

2n(n− 1)
=
m2(n−m)2

n(n− 1)
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so that

Varπ(ϕA),VarPk(ϕA) ≤ R

2γ
≤ m(n−m)

4
.

Under the uniform distribution, ϕA has variance n+1
12 , so this bound is of the correct order

when m is a small fixed number. Arguing as in the random-to-top case, we have

∣∣∣EPkid [ϕA]− Eπ[ϕA]
∣∣∣ =

∣∣∣∣∣
(

1− 2m(n−m)

n(n− 1)

)k
ϕA(id)

∣∣∣∣∣ =
n− 1

2

(
1− 2m(n−m)

n(n− 1)

)k

= exp

[
k log

(
1− 2m(n−m)

n(n− 1)

)]
n− 1

2

≥ exp

[
−2km(n−m)

n(n− 1)

(
1 +

2m(n−m)

n(n− 1)

)]
n−m

2
,

so we can take

r =
exp

[
−2km(n−m)

n(n−1)

(
1 + 2m(n−m)

n(n−1)

)]
n−m

2√
m(n−m)

4

= exp

[
−2km(n−m)

n(n− 1)

(
1 +

2m(n−m)

n(n− 1)

)
+

1

2
log

(
n−m
m

)]

to obtain the bound

∥∥∥P k − π∥∥∥
TV ∗
≥ 1− 4r−2

= 1− 4 exp

[
4km(n−m)

n(n− 1)

(
1 +

2m(n−m)

n(n− 1)

)
− log

(
n−m
m

)]
.

When k = n(n−1)
4m(n−m) log(n)− c n(n−1)

m(n−m) , we have

exp

[
4km(n−m)

n(n− 1)

(
1 +

2m(n−m)

n(n− 1)

)
− log

(
n−m
m

)]
= exp

[
log(n)

2m(n−m)

n(n− 1)
− 4c

(
1 +

2m(n−m)

n(n− 1)

)
+ log

(
n

n−m

)
+ log (m)

]
≤ exp

[
2m(n−m)

n
− 4c+ log(2) +m− 1

]
≤ 3

4
exp [3m− 4c] ,
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hence
∥∥P k − π∥∥

TV ∗
≥ 1 − 3e3m−4c, which goes to 1 as c → ∞. In fact, the preceding

argument shows that the mixing time is at least n(n−1)
4m(n−m) log(n) when m is not held

constant provided that m = m(n) ∈n→∞ o (log(n)). Using the bound from Theorem

2.2.2, we see that if k = n(n−1)
m(n−m) log(n) + c n(n−1)

m(n−m) , then

∥∥∥P k − π∥∥∥
TV ∗
≤
(
n

2

)(
1− 2

m(n−m)

n(n− 1)

)k
≤ n2

2
exp

(
−2km(n−m)

n(n− 1)

)
=

1

2
e−2c.

Thus our lower bound matches the upper bound up to a factor of 4. To the best of the

author’s knowledge, this is the first nontrivial lower bound which has been obtained for

random-m-set-to-top shuffles - the lower bound trick for top-to random shuffles does not

appear to be applicable in this case. However, based on the analogy with random-to-top

shuffles, the mixing time is probably given by the upper bound.

The same general argument can be carried out for other walks on the braid arrange-

ment satisfying the conditions of Theorem 3.2.1, and the representation of R given above

usually makes the calculations quite manageable. Moreover, this representation often

provides a good deal of insight about how to choose A both in terms of optimality and

computational simplicity. Also, the general idea of using distinguishing statistics and

Wilson’s variance bound applies to all hyperplane chamber walks, and candidate eigen-

functions can be found with the aid of Theorem 3.1.1. The foregoing was intended

primarily as an example of the utility of eigenfunctions for obtaining lower bounds, but it

is likely that one can find novel bounds of the correct order by applying these arguments

to other chamber walks. However, it should be mentioned that this method works better

for some chains than others. For example, it fails spectacularly for lower-bounding the
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mixing time of riffle shuffles, while yielding the correct bound for random walk on the

hypercube.

3.3.1.2 Stochastic Monotonicity and Upper Bounds

We now show that eigenfunctions can also be used to upper-bound the mixing time of

hyperplane chamber walks by appealing to stochastic monotonicity of the Markov kernel

and the fact that the top eigenfunctions are also monotone with respect to certain partial

orders on the chambers. A Markov kernel P is said to be stochastically monotone with

respect to a partial order � on its state space S if for all x, y ∈ S with x � y, one has

∑
z′�z

P (x, z′) ≥
∑
z′�z

P (y, z′) for all z ∈ S.

(If S is infinite, then one replaces
∑

z′�z P (x, z′) with
´
z′�z P (x, dz′) in the above expres-

sion, and similarly for y.)

Building on work of David Wilson [70], Diaconis, Khare, and Saloff-Coste provided

some general results for upper-bounding the mixing time of stochastically monotone

Markov chains with real-valued state spaces in terms of strictly monotone eigenfunctions

[31]. This technique was subsequently generalized to chains having partially ordered state

spaces by Khare and Mukherjee in order to deal with multivariate Markov chains. Before

presenting a version of these results, we first establish that hyperplane chamber walks are

indeed stochastically monotone with respect to several partial orders. We begin with the

following lemma, which is probably known but has not been found in the literature by

the author.
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Lemma 3.3.3. Suppose that P is the transition matrix for a Markov chain on a partially

ordered state space (S,�) which has a random mapping representation (f, Z) where f :

S × Λ → S is monotone nondecreasing in its first argument. Then P is stochastically

monotone with respect to �.

Proof. Let w, x, y ∈ S with x � y be given. Since f is nondecreasing in its first ar-

gument, we have that f(x, z) � f(y, z) for all z ∈ Λ, thus {z ∈ Λ : f(y, z) � w} ⊆

{z ∈ Λ : f(x, z) � w}. It follows that

∑
w′�w

P (y, w′) =
∑
w′�w

P{f(y, Z) = w′} =
∑
w′�w

∑
z∈Λ:

f(y,z)=w′

P{Z = z}

=
∑
z∈Λ:

f(y,z)�w

P{Z = z} ≤
∑
z∈Λ:

f(x,z)�w

P{Z = z}

=
∑
w′�w

P{f(x, Z) = w′} =
∑
w′�w

P (x,w′).

If S is infinite, the sums are replaced with integrals.

Now the partial order on the set of faces introduced in section 2.1 does not distinguish

between chambers. However, since chamber walks have random mapping representation

(f, Z) where f : C × F → C is defined by f(C,F ) = FC and Z is distributed according

to w, it follows from Lemma 3.3.3 that the associated kernel is stochastically monotone

with respect to any partial order on C satisfying C � D implies FC � FD for all

F ∈ F . In particular, for any fixed chamber D ∈ C, consider the partial order C �D C ′ if

{i ∈ [m] : σi(C) 6= σi(D)} ⊆ {i ∈ [m] : σi(C
′) 6= σi(D)}. For any F ∈ F and any C,C ′ ∈

C with C �D C ′, if σi(FC) 6= σi(D), then either σi(F ) 6= σi(D) and thus σi(FC
′) 6=

σi(D), or σi(F ) = 0 and σi(C) 6= σi(D) so that σi(C
′) 6= σi(D) and thus σi(FC

′) 6= σi(D).
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Therefore, the BHR kernel is stochastically monotone with respect to �D. In the case

of the braid arrangement, where the chambers are indexed by permutations, the set of

negative sign sequence coordinates of a chamber C ∼ π is equal to the inversion set of

π−1. Thus taking D ∼ id so that σ(D) = (+, ...,+), one has π1 �D π2 if and only

if Inv
(
π−1

1

)
⊆ Inv

(
π−1

2

)
if and only if π−1

1 �rwb π−1
2 if and only if π1 �lwb π2 where

�lwb,�rwb denote the left and right weak Bruhat orders, respectively. As the left and

right weak Bruhat orders are isomorphic via π 7→ π−1, we will omit this distinction

henceforth.

Paul Edelman showed that (an equivalent definition of) the order �D with D ∼ id

is isomorphic to the weak Bruhat order on any finite Coxeter group when the group

elements are identified with the chambers of the corresponding hyperplane arrangement

[35], and it is shown in [9] that this definition of the weak Bruhat order extends naturally

to an ordering on the topes of oriented matroids in general, of which the chambers of

a real hyperplane arrangement are a special case. For hyperplane arrangements, the

latter definition is given in terms of inclusion of the sets of hyperplanes separating the

chambers from some distinguished chamber. Our construction of �D is equivalent to

taking the distinguished chamber to be D. Accordingly, we will henceforth refer to �D

as the D-weak Bruhat order on the chambers, and we record this fact as

Theorem 3.3.1. Define the D-weak Bruhat order on the chambers of a hyperplane ar-

rangement A = {Hi}mi=1 by

C �D C ′ if {i ∈ [m] : σi(C) 6= σi(D)} ⊆
{
i ∈ [m] : σi(C

′) 6= σi(D)
}
.

. Then the BHR walks are stochastically monotone with respect to �D.
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It was noted in [12] that hyperplane chamber walks are stochastically monotone with

respect to the weak Bruhat order and it is likely that the authors had something like

the preceding argument in mind with D ∼ id. They further observed that since there

are least and greatest elements for the Bruhat order (0̂ = D and 1̂ = −D, the chamber

with all sign sequence coordinates opposite to those of D, according to the definition

given here), stochastic monotonicity implies that one can use monotone coupling from

the past to obtain exact samples from the stationary distributions of these chains. Using

very similar ideas, one can get upper bounds on the variation distance using the methods

developed by Diaconis, Khare, and Saloff-Coste in [31]. We will make use of the following

generalization of their result to partially ordered state spaces due to Khare and Mukherjee

[47].

Theorem 3.3.2 (Khare and Mukherjee). Let P be the transition density for an ergodic

Markov chain having finite state space S equipped with a partial order �. Let π denote

the stationary distribution and suppose that P is stochastically monotone with respect to

�. Suppose further that for all x, y ∈ S, there is some z(x, y) ∈ S such that z(x, y) � x, y

or x, y � z(x, y). If λ ∈ (0, 1) is an eigenvalue of P with strictly increasing eigenfunction

f , then for all x ∈ S

∥∥∥P kx − π∥∥∥
TV
≤ λk

c
E [|f(Y ) + f(x)− 2f (z(x, Y ))|]

where Y ∼ π and

c = inf{f(t)− f(s) : s � t, s 6= t}.

137



We remark that Khare and Mukherjee were also able to use stochastic monotonicity

and increasing eigenfunctions to obtain the lower bound
∥∥P kx − π∥∥TV ≥ λk

2C |f(x)| where

C = sup{|f(z)| : z ∈ S}. However, this bound is equivalent to the universal lower bound

presented here in section 1.2 when |λ| = λ∗ and is worse otherwise.

Now in order to apply Theorem 3.3.2 to hyperplane chamber walks we need only to

find eigenfunctions which are strictly increasing with respect to the D weak Bruhat order -

Theorem 3.3.1 establishes stochastic monotonicity and pairwise dominance is guaranteed

since we have maximal and minimal elements. One case in which such eigenfunctions

necessarily exist is when λH1 = ... = λHn , as is the case when the conditions of Theorem

3.2.1 are satisfied. This is because Theorem 3.1.1 shows that each λHi has eigenfunction

ϕi(C) =


− pi,
pi+qi

σi(C) = −

qi
pi+qi

, σi(C) = +

=1{σi(C) = +} − pi
pi + qi

=
qi

pi + qi
− 1{σi(C) = −}

where pi =
∑

F∈F :
σi(F )=+

w(F ) and qi =
∑

F∈F :
σi(F )=−

w(F ). Thus, setting

D+ = {i ∈ [m] : σi(D) = +}, D− = {i ∈ [m] : σi(D) = −},

and

KD =
∑
i∈D−

pi
pi + qi

+
∑
i∈D+

qi
pi + qi

,

we see that

ϕ(C) = |{i ∈ [m] : σi(C) 6= σi(D)}| −KD

=
∑
i∈D−

(
1{σi(C) = +} − pi

pi + qi

)
+
∑
i∈D+

(
1{σi(C) = −} − qi

pi + qi

)
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=
∑
i∈D−

ϕi(C)−
∑
i∈D+

ϕi(C)

is an eigenfunction corresponding to λ = λH1 = ... = λHm . If C � C ′ with C 6= C ′, then

{i ∈ [m] : σi(C) 6= σi(D)} ⊂ {i ∈ [m] : σi(C
′) 6= σi(D)}, so

ϕ(C) = |{i ∈ [m] : σi(C) 6= σi(D)}| −KD

<
∣∣{i ∈ [m] : σi(C

′) 6= σi(D)}
∣∣−KD = ϕ(C ′),

hence ϕ is strictly increasing. Also, it is clear in this case that

c = inf{ϕ(D)− ϕ(C) : C � D,C 6= D} = 1,

the infimum being achieved when

{
i ∈ [m] : σi(C

′) 6= σi(D)
}

= {i ∈ [m] : σi(C) 6= σi(D)} ∪ {j}

with j ∈ {i ∈ [m] : σi(C) = σi(D)}.

Now if P is the transition kernel of a hyperplane chamber walk with all hyperplane

eigenvalues equal to λ, then given any initial state C0, P is stochastically monotone with

respect to �C0 and ϕC0 is a strictly increasing eigenfunction for λ. Moreover, for any

C ∈ C, we have that z(C,C0) = C0 is dominated by both C and C0. Thus for any

C-valued random variable Y

E [|ϕC0(Y ) + ϕC0(C0)− 2ϕC0 (z(C0, Y ))|]

= E [|ϕC0(Y )− ϕC0(C0)|]

= E [||{i ∈ [m] : σi(Y ) 6= σi(C0)}| −KC0 − (−KC0)|]

= E [|{i ∈ [m] : σi(Y ) 6= σi(C0)}|]
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= E

[
m∑
i=1

1{σi(Y ) 6= σi(C0)}

]

=
m∑
i=1

P{σi(Y ) 6= σi(C0)}.

Therefore, Theorem 3.3.2 implies

Theorem 3.3.3. Let P be the transition density for an ergodic hyperplane chamber walk

with stationary distribution π. If the hyperplane eigenvalues satisfy λH1 = ... = λHm =

λ ∈ (0, 1), then for any k ∈ N and any initial state C0 ∈ C, we have

∥∥∥P kC0
− π

∥∥∥
TV
≤ λk

m∑
i=1

P{σi(Y ) 6= σi(C0)}

where Y ∼ π.

Specializing to random walks on the chambers of the braid arrangement in Rn with

translation invariant face measure, we have m =
(
n
2

)
and π uniform over C so that

P{σ(i,j)(Y ) 6= σ(i,j)(C0)} = 1
2 for all i < j, C0 ∈ C, hence

Corollary 3.3.1. Suppose that P is the transition density of a random walk on the braid

arrangement in Rn satisfying the conditions of Theorem 3.2.1. Then, letting λ denote the

subdominant eigenvalue of P , we have the variation bound

∥∥∥P k − π∥∥∥
TV ∗
≤ 1

2
λk
(
n

2

)
.

Note that the crude bound from Theorem 2.2.2 gives
∥∥P k − π∥∥

TV ∗
≤ λk

(
n
2

)
in cases

where the corollary is applicable. Though the extra factor of 1
2 will not affect bounds

on the mixing time, it is often an improvement in concrete applications. For example,

if one wanted to know how many times a deck of 52 cards had to be shuffled using the

top-to-random method until the total variation distance to stationarity was less than 1
10 ,
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then the bound from Theorem 2.2.2 would recommend 243 shuffles whereas the Corollary

3.3.1 shows that 225 shuffles suffice. If one is playing with an eight-deck shoe, as is the

case in some casinos, Corollary 3.3.1 would save the dealer over 330 shuffles.

In addition, this example serves to further motivate the method of monotone eigen-

functions for upper-bounding variation distance from [31], and to demonstrate its appli-

cability to partially ordered state spaces as in [47]. Also, it is illuminating to be able

to compare the bounds obtained by different techniques in specific examples of Markov

chains in order to understand the types of chains for which the various methods are ap-

plicable. When contrasting the bounds on shuffles from Theorem 2.2.2 and Corollary

3.3.1, it is not surprising that one obtains effectively the same mixing time estimates

since both results ultimately involve couplings with coupling times given by the number

of iterations required for all pairwise comparisons of cards to be made. Still, in order to

address more fundamental questions about Markov chain mixing times, such as “Under

which conditions does the cut-off phenomenon occur?” or “What are the most important

features of the transition rule for computing the mixing time?”, it is useful to assemble a

variety of specific examples and general techniques so as to obtain a more panoramic view

of the subject. In many senses, this is the underlying motivation for studying hyperplane

walks and one of the main contributions of this thesis.

In the spirit of investigating various features of the transition mechanism and their

broader applications, we now shift gears and explore some connections between Markov

chain eigenfunctions and Stein’s method.
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3.3.2 Connections with Stein’s Method

Over the past four decades, probabilists and statisticians have developed a wide range of

techniques, inspired by Charles Stein’s seminal paper [65], for bounding the distance be-

tween the distribution of a random variable X and and that of a random variable Z having

some specified target distribution. The metrics for which these techniques are applicable

are of the form dH(L (X),L (Z)) = suph∈H |E[h(X)]− E[h(Z)]| for some suitable class of

functionsH, and include as special cases the Wasserstein, Kolmogorov, and total variation

distances. (The Kolmogorov distance gives the L∞ distance between the associated dis-

tribution functions, soH = {1(−∞,a](x) : a ∈ R}. The total variation and Wasserstein dis-

tances correspond to lettingH consist of indicators of Borel sets and 1-Lipschitz functions,

respectively.) The basic idea is to find an operator A such that E[(Af)(X)] = 0 for all f

belonging to some sufficiently large class of functions F if and only if L (X) = L (Z). For

example, Charles Stein showed that E[(ANf)(Z)] = E[Zf(Z)−σ2f ′(Z)] = 0 for all abso-

lutely continuous functions f such that the expectations exist if and only if Z ∼ N(0, σ2),

and his student Louis Chen showed shortly thereafter that Z ∼ Poisson(λ) if and only if

E[(AP f)(Z)] = E[Zf(Z)− λf(Z + 1)] = 0 for all functions f for which the expectations

exist [17]. Similar characterizing operators have since been worked out for several other

distributions (see [59] for some examples). Given such an operator A for L (Z), one can

consider the solution fh ∈ F to the equation (Af)(x) = h(x)−E[h(Z)] for h ∈ H. Taking

expectations, absolute values, and suprema gives

dH(L (X),L (Z)) = sup
h∈H
|E[h(X)]− E[h(Z)]| = sup

h∈H
|E[(Afh)(X)]| .

142



The intuition is that since E[(Af)(Z)] = 0 for f ∈ F , the distribution of X should be

close to that of Z when E[(Af)(X)] is close to zero. Remarkably, it is often easier to

work with the right-hand side of the above equation, and the tools for analyzing distances

between distributions in this manner are collectively known as Stein’s method. For more

on this rich and fascinating subject, the author highly recommends [66, 59, 17, 26].

3.3.2.1 Using Stein’s Method to Study Eigenfunctions

The connection between Stein’s method and eigenvectors of Markov chains arises from

one of the earliest and most common techniques within this framework for bounding the

distance to normality, namely the use of Stein pairs introduced in [66]. A pair of random

variables (W,W ′) is called a γ-Stein pair if it is exchangeable - that is, (W,W ′) =d

(W ′,W ) - and satisfies the linearity condition E[W ′|W ] = (1− γ)W for some γ ∈ (0, 1).

A typical result involving Stein pairs is given by the following theorem due to Yosef Rinott

and Vladimir Rotar [56]

Theorem 3.3.4 (Rinott and Rotar). Let W,W ′ be an exchangeable pair of real-valued

random variables such that E[W ′|W ] = (1 − γ)W for some γ ∈ (0, 1). If there exists a

constant A such that |W ′ −W | ≤ A almost surely, then for all x ∈ R,

|P (W ≤ x)− Φ(x)| ≤ 12

γ

√
Var(E[(W ′ −W )2|W ] + 48

A3

γ
+ 8

A2

√
γ

where Φ(x) = 1√
2π

´ x
−∞ e

− t
2

2 dt is the standard normal c.d.f.

It is often the case that Stein pairs are constructed by letting W and W ′ be functions

of successive steps in a reversible Markov chain started in equilibrium [17, 59]. To see how

this works, suppose that W is a random variable defined on a discrete probability space
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(Ω,F , π) and that (f, Z) is a random mapping representation of the transition matrix,

P , of a Markov chain with state space Ω and stationary distribution π. Define a new

random variable W ′ on (Ω,F , π) by W ′(ω) = W (f(ω,Z)). If P is reversible with respect

to π, then this construction shows that for all a, b ∈W (Ω) = {W (ω) : ω ∈ Ω}, we have

P{W = a,W ′ = b} =
∑

x∈W−1(a)

π(x)
∑

y∈W−1(b)

P (x, y)


=

∑
x∈W−1(a)

∑
y∈W−1(b)

π(x)P (x, y) =
∑

x∈W−1(a)

∑
y∈W−1(b)

π(y)P (y, x)

=
∑

y∈W−1(b)

π(y)
∑

x∈W−1(a)

P (y, x)

 = P{W = b,W ′ = a},

hence (W,W ′) is exchangeable. Note that we do not require that Wn = W (ωn) is a

Markov chain for the exchangeability condition to be satisfied. Indeed, this will only be

the case if the underlying chain satisfies the lumping criterion from Theorem 1.3.1 with

respect to the equivalence relation induced by W .

The linearity condition is typically verified by showing that E[W ′|ω] = (1− γ)W and

then using the fact that σ(W ) ⊆ σ(ω) to conclude that

E[W ′|W ] = E[E[W ′|ω]|W ] = E[(1− γ)W |W ] = (1− γ)W.

Because

E[W ′|ω] = E[W (f(ω,Z))] =
∑
y∈Ω

W (y)P{f(ω,Z) = y} =
∑
y∈Ω

P (ω, y)W (y),

the condition E[W ′|ω] = (1 − γ)W is equivalent to the statement that W is a right

eigenfunction for P with eigenvalue (1−γ), and this fact does not depend on reversibility.
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The above discussion shows that one way to obtain a Stein pair involving a random

variable W on (Ω,F , π) is to construct a reversible Markov chain on Ω with stationary

distribution π for which W is a (right) eigenfunction. (It also shows that when (W,W ′)

is a γ-Stein pair constructed in terms of a Markov chain on the underlying space and

E[W ′|ω] = (1 − γ)W , then W is actually an eigenfunction of that chain.) Observe that

since P has real entries, γ will be real provided that W is, and the spectral theorem

shows that this always holds for reversible chains. In addition, as long as the chain is

irreducible and W is not constant, we know from section 1.1 that 1 − γ < 1, so W has

expectation 0 under π (because π is a left eigenfunction with eigenvalue 1 6= 1 − γ and

thus is orthogonal to W ), and we can always normalize so that Var(W ) = E[W 2] = 1.

Also, this approach guarantees that W and W ′ have common law since ω and f(ω,Z)

both have distribution π.

The following (special case of a) theorem due to Adrian Röllin shows that one can

get bounds which are similar to those coming from Stein pairs without requiring (W,W ′)

to be exchangeable, provided that they are equidistributed with mean zero and variance

one, so this approach is actually quite general [57].

Theorem 3.3.5 (Röllin). Suppose that W and W ′are a pair of real-valued random vari-

ables having common law such that E[W ] = 0, Var(W ) = 1, and E[W ′|W ] = (1 − γ)W

for some γ ∈ (0, 1). Suppose moreover that there is a constant A such that |W ′ −W | ≤ A

almost surely. Then for all x ∈ R,

|P (W ≤ x)− Φ(x)| ≤ 12

γ

√
Var(E[(W ′ −W )2|W ]) + 32

A3

γ
+ 6

A2

√
γ

where Φ is the standard normal c.d.f.
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In light of Röllin’s theorem, we see that one can use the above construction to study the

asymptotic normality of Markov chain eigenfunctions even if the chain is not reversible.

One of the earliest uses of a nonreversible Markov chain to construct Stein pairs was

in [39] to study the asymptotics of the number of descents and inversions in a random

permutation. Using a similar construction, the author was able to extend this result to

obtain rates of normal convergence for the number of generalized descents of a random

permutation [54]. (Recall from subsection 3.2 that for π ∈ Sn and 1 ≤ d < n, a pair (i, j)

with i < j ≤ i + d and π(i) > π(j) is called a d -descent of π and Desd(π) denotes the

number of these generalized descents.) In both cases, the pairs are constructed by taking

the real, skew-symmetric n× n matrix M(n, d) = [Mi,j(n, d)]ni,j=1 given by

Mi,j(n, d) =



−1, i < j ≤ i+ d

1, j < i ≤ i+ d

0, otherwise

and defining the random variable Zn,d by Zn,d(π) =
∑

i<jMπ(i),π(j)(n, d). One then com-

putes that Zn,d(π) = 2Desd(π
−1) − 2nd−d2−d

2 where 2nd−d2−d
2 is the expected number of

descents. Next, one defines the random variable Wn,d(π) =
Zn,d(π)√
Var(Zn,d)

which is distributed

as the normalized number of d -descents of π. The complementary random variable W ′n,d is

defined by choosing I uniformly from [n] = {1, 2, ..., n} and setting W ′n,d(π) = Wn,d(πσI)

where σI is the cycle (I, I + 1, ..., n). Thus W ′ is obtained from W by performing a

“random-to-bottom” shuffle on the input. After some careful calculations, one finds that

E[W ′n,d|Wn,d] = (1 − 2
n)Wn,d. It follows that, for 1 ≤ d ≤ n − 1, Wn,d is a right eigen-

function of the random-to-end shuffle on Sn with eigenvalue (1− 2
n) [54]. Fulman’s work
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on the d = 1 and d = n − 1 cases predated Röllin’s theorem and required additional

arguments to establish that (W,W ′) was exchangeable, but one can circumvent this step

by arguing as in the preceding paragraphs. After much work estimating the terms in

Theorem 3.3.2 (guided largely by Fulman’s analysis for descents and inversions), and

deriving the variance of Desd(π) under the uniform distribution on Sn, it was eventually

established that [54]

Theorem 3.3.6. The number of d-descents in a random permutation of length n satisfies

∣∣∣∣P (Desd − µn,d
σn,d

≤ x
)
− Φ(x)

∣∣∣∣ ≤



M1d
3
2n−

1
2 , d(n) ≤

√
(n)

M2nd
− 3

2 ,
√

(n) < d(n) ≤ n
2

M3n
− 1

2 , 2d(n) > n

M(d)n−
1
2 , d fixed

where Φ is the standard normal c.d.f., M1, M2, M3, and M(d) are constants which do

not depend on n, µn,d = 2nd−d2−d
4 , and σn,d =

√
Var(Desd).

Theorem 3.3.3 was deduced before the present work on eigenfunctions for hyperplane

walks, but the construction of the pair (W,W ′) is made clear in retrospect: A random-

to-bottom shuffle is combinatorially equivalent to random-to-top shuffle, and the results

of section 3.2 show that

−Zn,d(π) =
2nd− d2 − d

2
− 2Desd(π

−1)

is an eigenfunction corresponding to 1− 2
n .

The main point of the foregoing is that Markov chain eigenfunctions are often inter-

esting in their own right and their asymptotic properties can be studied using Stein’s
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method techniques. Many other questions about random permutations can be addressed

by looking at statistics which can be represented in terms of linear combinations of in-

dicators of inversions, and the fact that such statistics arise as eigenfunctions of Markov

chains with nice combinatorial interpretations suggests the possibility of studying them

via Stein’s method. It is shown in [32] that other permutation statistics which can be

expressed as linear combinations of products of indicators of inversions are also eigenfunc-

tions for a-shuffles, and it is likely the case that this is true for top-to-random shuffles as

well. (Inspection of Theorems 3.3.1 and 3.3.2 show that one typically gets better bounds

by using eigenfunctions corresponding to larger eigenvalues, so the top-to-random shuffles

should yield better results than a-shuffles. See [58] for a more extensive discussion.) This

could be verified by using the lumping techniques and symmetry arguments from section

3.1 to study the eigenfunctions corresponding to the third and fourth largest eigenvalues

and would open up a wide variety of permutation statistics whose asymptotic properties

could likely be deduced using the aforementioned methodology. Another interesting line

of research would be to carry out a similar program using eigenfunctions for the Tsetlin

library. The stationary distribution of this chain is known as the Luce model in cognitive

science and the above may offer a tractable approach to study its properties. See chapter

9 in [21] for more on the Luce model and its statistical applications.

3.3.2.2 Eigenfunctions for Random Walks on Sn

Having seen how one can exploit the fact that some statistics of interest are eigenfunctions

of Markov chains to facilitate Stein’s method computations, we now turn to an example

of a sort of methodological converse: It is sometimes the case that calculations carried out
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in Stein’s method arguments produce Markov chain eigenfunctions as a byproduct. This

turns out to be the case in the derivation of convergence rates in Hoeffding’s combinatorial

central limit theorem, originally worked out by Bolthausen [11]. The present argument

is based on the discussion in [17] which establishes an L1 bound on the convergence rate.

Before stating the result, we need to introduce the following notation. Define

a•• =
1

n2

n∑
i,j=1

ai,j , ai• =
1

n

n∑
j=1

ai,j , and a•j =
1

n

n∑
i=1

ai,j ,

and let

µ = na••,

σ2 =
1

n− 1

n∑
i,j=1

(ai,j − ai• − a•j + a••)
2,

γ =
n∑

i,j=1

|ai,j − ai• − a•j + a••|3 .

Then one has

Theorem 3.3.7. For n ≥ 3, let [ai,j ]
n
i,j=1 be the components of a matrix A ∈ Mn(R),

let π be a random permutation uniformly over Sn, and let Y =
n∑
i=1

ai,π(i). If F denotes

the distribution function of W = Y−µ
σ , and Φ denotes the standard normal distribution

function, then the L1 distance between F and Φ satisfies

‖F − Φ‖1 ≤
γ

(n− 1)σ3

(
16 +

56

n− 1
+

8

(n− 1)2

)
.

The proof of Theorem 3.3.4 is based on the construction of a zero bias variable using

an exchangeable pair constructed in terms of a random transposition walk on Sn. Briefly,
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by replacing ai,j with ai,j − ai• − a•j + a••, it can be assumed without loss of generality

that ai• = a•j = a•• = 0. Then taking Y (π) =
∑n

i=1 ai,π(i), one defines the random

variable Y ′(π) = Y (πτ) where τ is uniformly distributed over the
(
n
2

)
transpositions in

Sn. The Stein condition is established by computing E[Y ′− Y |π] = − 2
n−1Y . As detailed

in the previous sub-subsection, this shows that Y is an eigenfunction (corresponding to

λ = 1 − 2
n−1) for the random walk on Sn driven by the measure which is uniform over

the conjugacy class of 2-cycles. Examination of the proof shows that it suffices to assume

that ai• = 0 for all i. We take this observation as our starting point.

Let A = [ai,j ]
n
i,j=1 be any matrix with real entries which satisfies

n∑
j=1

ai,j = 0

for all i ∈ [n], and define the map, ϕA : Sn → R by

ϕA(π) =
n∑
i=1

ai,π(i).

Note that ϕA(π) gives the result of right-multiplying A by the permutation matrix corre-

sponding to π (that is, the defining representation of Sn evaluated at π) and taking the

trace.

Let {Xk}∞k=1 denote the random transposition walk on Sn having transition matrix

P (π, σ) = P{Xk+1 = σ|Xk = π) =


(
n
2

)−1
, σπ−1 ∈ Tn

0, else

where Tn = {τ ∈ Sn : τ = (i, j), 1 ≤ i < j ≤ n} denotes the set of transpositions.

(Typical treatments of the random transposition walk add a holding probability to deal
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with periodicity problems. Note however that the measure driving the random transpo-

sition walk with holding is still constant on conjugacy classes, the eigenfunctions are the

same with or without holding, and the eigenvalues transform linearly.) The proof of the

combinatorial central limit theorem using Stein pairs essentially shows that ϕA is a right

eigenfunction for P with eigenvalue λ = 1− 2
n−1 (provided that ϕA is not the zero map).

To see that this is indeed the case, we compute

[PϕA](π) =
∑
σ∈Sn

P (π, σ)ϕA(σ) =

(
n

2

)−1 ∑
τ∈Tn

ϕA(τπ) =
2

n(n− 1)

∑
τ∈Tn

n∑
k=1

ak,τ(π(k))

=
2

n(n− 1)

∑
i<j

 ∑
k 6=π−1(i),π−1(j)

ak,π(k)

+ aπ−1(i),j + aπ−1(j),i


=

2

n(n− 1)

∑
i<j

(
ϕA(π)− aπ−1(i),i − aπ−1(j),j + aπ−1(i),j + aπ−1(j),i

)
= ϕA(π)− 2

n(n− 1)

∑
i<j

(
aπ−1(i),i + aπ−1(j),j − aπ−1(i),j − aπ−1(j),i

)
.

Because the summands are symmetric in i and j, we may write

[PϕA](π) = ϕA(π)− 2

n(n− 1)

∑
i<j

(
aπ−1(i),i + aπ−1(j),j − aπ−1(i),j − aπ−1(j),i

)
= ϕA(π)− 1

n(n− 1)

∑
i,j:
i 6=j

(
aπ−1(i),i + aπ−1(j),j − aπ−1(i),j − aπ−1(j),i

)

= ϕA(π)− 1

n(n− 1)

∑
k,l:
k 6=l

(
ak,π(k) + al,π(l) − ak,π(l) − al,π(k)

)

= ϕA(π)− 2

n(n− 1)

∑
k,l:
k 6=l

(
ak,π(k) − ak,π(l)

)
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= ϕA(π)− 2

n(n− 1)

n∑
k=1

∑
l:
l 6=k

ak,π(k) −
∑
l:
l 6=k

ak,π(l)


= ϕA(π)− 2

n(n− 1)

n∑
k=1

(
(n− 1)ak,π(k) − (−ak,π(k))

)
= ϕA(π)− 2

n− 1
ϕA(π)

where the third equality reindexed the sum by k = π−1(i), l = π−1(j) and the penultimate

equality used the fact that the rows of A sum to zero. Therefore, if A is any real n × n

matrix whose rows sum to zero, then PϕA =
(

1− 2
n−1

)
ϕA.

At this point, we observe that we may as well work with matrices whose columns also

sum to zero since if A ∈ Mn(R) is any row-sum zero matrix, then taking A′ = [a′i,j ]
n
i,j=1

with a′i,j = ai,j − a•j , we have

ϕA′(π) =

n∑
k=1

a′k,π(k) =

n∑
k=1

(ak,π(k) − a•π(k)) =
n∑
k=1

ak,π(k) −
n∑
k=1

a•π(k)

=
n∑
k=1

ak,π(k) −
n∑
k=1

n∑
i=1

ai,π(k) =
n∑
k=1

ak,π(k) −
n∑
i=1

n∑
k=1

ai,π(k)

=

n∑
k=1

ak,π(k) −
n∑
i=1

n∑
j=1

ai,j =

n∑
k=1

ak,π(k) −
n∑
i=1

0

=

n∑
k=1

ak,π(k) = ϕA(π).

Now, define

A = {A = [ai,j ]
n
i,j=1 ∈Mn(R) :

n∑
k=1

ai,k =
n∑
k=1

ak,j = 0 for all i, j ∈ [n]}

and let F = {ϕA : A ∈ A}. It follows from linearity that ϕA−ϕB = ϕA−B and cϕA = ϕcA

for all A,B ∈ A, c ∈ R, so, since A is closed under linear combinations, F is a vector

space. We also observe that the nonzero constant functions are right eigenfunctions of
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P having eigenvalue 1, so means that ϕA is constant in π if and only if ϕA ≡ 0. One

checks that if π is uniform over Sn and Y is the random variable Y (π) = ϕA(π) for any

A ∈Mn(R), then Var(Y ) = 1
n−1

∑n
i,j=1 |ai,j − ai• − a•j + a••| 2. It follows that if A ∈ A,

then ϕA has variance 1
n−1

∑n
i,j=1 |ai,j |

2 under the uniform distribution on Sn, so ϕA is

nonconstant if and only if ai,j = 0 for all i, j ∈ [n]. Accordingly, ϕA = 0 if and only

if A = 0, so for all A,B ∈ A, ϕA = ϕB if and only if 0 = ϕA − ϕB = ϕA−B if and

only if A− B = 0. Therefore, dim(F) = dim(A) = (n− 1)2, a basis for the latter being

{E(i,j)}n−1
i,j=1 with

E
(i,j)
k,j =



1, i = k, j = l

−1, i = k, j = n or i = n, j = l

0, otherwise

.

In order to find a basis for F , note that for any A ∈ A, the fact that the rows of A

sum to 0 implies

ϕA(π) =
n∑
k=1

ak,π(k) =
n−1∑
k=1

(ak,π(k) − an,π(k)) =
n−1∑
i=1

n∑
j=1

(ai,j − an,j)1{π(i) = j}

=
n−1∑
i=1

n−1∑
j=1

(ai,j − an,j)1{π(i) = j}+
n−1∑
i=1

(ai,n − an,n)1{π(i) = n}

=
n−1∑
i=1

n−1∑
j=1

(ai,j − an,j)1{π(i) = j} −
n−1∑
i=1

n−1∑
j=1

(ai,j − an,j)1{π(i) = n}

=

n−1∑
i=1

n−1∑
j=1

(ai,j − an,j)(1{π(i) = j} − 1{π(i) = n}) =
n−1∑
i,j=1

a′i,je
(i,j)(π)

where a′i,j = ai,j − an,j and e(i,j)(π) = 1{π(i) = j} − 1{π(i) = n} for i, j ∈ [n − 1].

Consequently, F is spanned by the (n−1)2 functions {e(i,j)}n−1
i,j=1, so {e(i,j)}n−1

i,j=1 is a basis

for F . We will see shortly that the dimension of the eigenspace corresponding to 1− 2
n−1
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is (n− 1)2, so {e(i,j)}n−1
i,j=1 is actually a basis for the

(
1− 2

n−1

)
-eigenspace of the random

transposition walk. (Note that the above argument carries through directly if we work

over C instead of R. However, this is not an issue since the irreducible characters of Sn

are rational-valued, so it will follow from the ensuing arguments that the eigenvalues of

random walks on Sn which are driven by measures that are constant on conjugacy classes

are all real-valued.)

At this point we change gears for a moment and consider a fascinating result due

to Peter Matthews which was alluded to in section 3.2. Recall that for any probability

measure µ on a finite group G = {s1, ..., sN}, one can construct a Markov chain on G by

defining the transition matrix Q(si, sj) = µ(sjs
−1
i ) - the random transposition walk being

the special case where G = Sn and µ is uniform over Tn. In this setting, let ρ1, ..., ρK

denote the irreducible representations of G with respect to a basis such that ρj(si) is

unitary for each i, j. Let χ1, ..., χK denote their respective characters and d1, ..., dK their

degrees (so χj(s) = Tr(ρj(s)), dj = χj(id)), and, through a slight abuse of notation, write

the Fourier transform of µ at the representation ρ as Q̂(ρ) =
∑N

i=1 µ(si)ρ(si). For each

k = 1, ...,K, define the d2
k × d2

k block diagonal matrix

Mk = I ⊗ Q̂(ρk) =


Q̂(ρk) 0

. . .

0 Q̂(ρk)



154



and define the N ×N block diagonal matrix

M =



M1 0

M2

. . .

0 MK


.

(The dimensions check out since the sum of the squares of the degrees of the irreducible

complex representations of a finite group equals the order of the group.)

Let

ψk(s) =

√
dk
N

[
ρk(s)1,1 · · · ρk(s)dk,1 · · · ρk(s)1,dk · · · ρk(s)dk,dk

]T
be the column vector in Cd2

k obtained by stacking the columns of ρk(s) and normalizing

by
√

dk
N , and let

ψ(s) = [ ψ1(s)T ψ2(s)T · · · ψK(s)T ]T

be the column vector in CN obtained by likewise concatenating the ψk(s)’s. It is worth ob-

serving that we can write ψk(s) =
√

dk
N vec(ρk(s)) where vec is the vectorization operator

appearing in the formula from matrix calculus [41]

Tr(A∗BC) = vec(A)∗vec(BC) = vec(A)∗(I ⊗B)vec(C).

Define the N ×N matrix φ by

φ = [ ψ(s1) ψ(s2) · · · ψ(sN )] .
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Then

φ∗ =



ψ(s1)∗

ψ(s2)∗

...

ψ(sN )∗


=



ψ1(s1)∗ ψ2(s1)∗ · · · ψK(s1)∗

ψ1(s2)∗ ψ2(s2)∗ · · · ψK(s2)∗

...
...

...

ψ1(sN )∗ ψ2(sN )∗ · · · ψK(sN )∗



=



√
d1
N ρ1(s1)1,1 · · ·

√
d1
N ρ1(s1)d1,d1 · · ·

√
dK
N ρK(s1)dK ,dK√

d1
N ρ1(s2)1,1 · · ·

√
d1
N ρ1(s2)d1,d1 · · ·

√
dK
N ρK(s2)dK ,dK

...
...

...√
d1
N ρ1(sN )1,1 · · ·

√
d1
N ρ1(sN )d1,d1 · · ·

√
dK
N ρK(sN )dK ,dK


.

Recall that if we define an inner product on the space of functions {f : G → C} by

〈f, g〉G = 1
N

∑
s∈G f(s)g(s), then it follows from the Schur orthogonality relations that

the matrix entries of the irreducible representations, which we have taken to be unitary,

satisfy 〈(ρa)i,j , (ρb)k,l〉G = 0 for all i, j, k, l if a 6= b, and 〈(ρa)i,j , (ρa)k,l〉 = 1
da
δi,kδj,l.

Consequently, the columns of φ∗ are orthonormal with respect to the standard inner

product on CN , so the matrix φ is unitary.

Using Fourier analysis, Matthews showed that we can write Q = φ∗M∗φ. To see that

this is true, note that by Fourier inversion we have

Q(si, sj) = µ(sjs
−1
i ) =

1

N

K∑
k=1

dkTr
(
ρk(sis

−1
j )Q̂(ρk)

)

=
1

N

K∑
k=1

dkTr
(
ρk(si)ρk(s

−1
j )Q̂(ρk)

)

=
1

N

K∑
k=1

drTr
(
ρk(si)ρk(sj)

∗Q̂(ρk)
)
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=
1

N

K∑
k=1

drTr
(
ρk(sj)

∗Q̂(ρk)ρk(si)
)

=

K∑
k=1

√
dr
N

vec

(√
dk
N
ρk(sj)

)∗ (
I ⊗ Q̂(ρk)

)√dr
N

vec

(√
dk
N
ρk(si)

)

=

K∑
k=1

ψk(sj)
∗Mkψk(si) = (φ∗Mφ) (sj , si)

= (φ∗Mφ)T (si, sj) = (φ∗Mφ)∗ (si, sj) = (φ∗M∗φ) (si, sj),

thus Q = (φ∗M∗φ) and the result follows upon taking conjugates and keeping in mind

that the entries of Q are real valued. The author finds it more instructive to leave this

decomposition in the form Q = (φ∗M∗φ) = φTMTφ = ΦMTΦ−1 where

Φ = φT =

√
d1
N ρ1(s1)1,1 · · ·

√
d1
N ρ1(s1)d1,d1 · · ·

√
dK
N ρK(s1)dK ,dK√

d1
N ρ1(s2)1,1 · · ·

√
d1
N ρ1(s2)d1,d1 · · ·

√
dK
N ρK(s2)dK ,dK

...
...

...√
d1
N ρ1(sN )1,1 · · ·

√
d1
N ρ1(sN )d1,d1 · · ·

√
dK
N ρK(sN )dK ,dK


.

(Since φ is unitary, φ−1 = φ∗, so Φ−1 = (φT )−1 = (φ−1)T = (φ∗)T = φ.)

The utility of this decomposition becomes especially evident when the measure µ driv-

ing the random walk is constant on conjugacy classes. This is because Fourier transforms

of class functions are homotheties. Specifically, if f(s) = f(t) whenever s and t are con-

jugate, then, for ρ a unitary irreducible representation of G, f̂(ρ) = λI with I the dρ×dρ

identity matrix and λ = 1
dρ

∑
s∈G f(s)χρ(s). It follows that M is a diagonal matrix (and

thus equals its transpose) whenever µ is constant on conjugacy classes, so Q decomposes

as Q = ΦMΦ−1 where M is a diagonal matrix and Φ is a unitary matrix. As such, the
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columns of Φ give an orthonormal basis of eigenvectors and the diagonal entries of M

give the corresponding eigenvalues. We record this result as

Theorem 3.3.8. Suppose that Q is the transition matrix for a random walk on a finite

group G which is driven by a measure µ that is constant on the conjugacy classes of

G. If ρ1, ..., ρK are the irreducible (complex, unitary) representations of G where ρk

has degree dk and character χk, then for each k = 1, ...,K, Q has an eigenvalue λk =

1
dk

∑
s∈G µ(s)χk(s) occurring with multiplicity d2

k. An orthonormal basis of eigenfunctions

for the eigenspace corresponding to λk is given by the (normalized) matrix entries of ρk,

{
√

dk
|G|ρk(s)i,j}

dk
i,j=1.

Theorem 3.3.5 has appeared in the literature under various guises for at least 50 years

(see [22] for some history), but the author feels that the result is stated most conveniently

above and that the use of the vect operator makes the proof more transparent than many

other treatments. Also, it is worth explicitly stating that the eigenfunctions of Q depend

only on the irreducible representations of G, so every random walk on G driven by a

measure which is constant on conjugacy classes has the same set of eigenspaces (though

the eigenvalues will vary with the measure defining the walk). Thus if we have determined

an eigenbasis corresponding to the representation ρk for one such Markov chain, then we

have found that eigenbasis for all of them.

Specializing to the case where Q is the transition matrix for the random transpo-

sition walk on Sn and using the fact that ρdef = ρtriv ⊕ ρstd where ρdef is the n-

dimensional defining representation whose character is given by χdef (π) = fp(π) =

{# of fixed points of π}, ρtriv ≡ 1 is the 1-dimensional trivial representation, and ρstd
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is the (n − 1)-dimensional standard representation, the latter two being irreducible, we

see that the χstd(τ) = (n− 2)− 1 for every transposition τ ∈ Sn, so the eigenvalue of Q

parametrized by ρstd is λ = n−3
n−1 = 1− 2

n−1 occurring with multiplicity (n− 1)2. Also, it

follows from the proof of Lemma 1 in chapter 3D of [21] that there are no other irreducible

representations whose character ratio at a transposition is λ = n−3
n−1 , so the dimension of

the eigenspace corresponding to λ is exactly (n− 1)2. By Theorem 3.3.5, an orthonormal

basis of eigenfunctions for λ is given by {
√

n−1
n! ρstd(π)i,j}n−1

i,j=1.

Recalling that the (n−1)2 functions e(i,j)(π) = 1{π(i) = j}−1{π(i) = n}, i, j ∈ [n−1],

form a basis for an (n−1)2-dimensional space of
(

1− 2
n−1

)
-eigenfunctions for the random

transposition walk, we have established

Theorem 3.3.9. Suppose that Q is the transition matrix for a random walk on Sn

which is driven by a measure µ that is constant on conjugacy classes. Then, letting

fp(π) denote the number of fixed points of a permutation π, Q has an eigenvalue λ =∑
π∈Sn µ(π)fp(π)−1

n−1 occurring with multiplicity (n − 1)2. A basis for the corresponding

eigenspace is given by e(i,j)(π) = 1{π(i) = j} − 1{π(i) = n}, i, j ∈ [n− 1].

Because {ρstd(π)i,j}n−1
i,j=1 and {e(i,j)(π)}n−1

i,j=1 are both bases for the n−3
n−1 -eigenspace for

the random transposition walk, we have

Proposition 3.3.3. The matrix entries of the standard representation of Sn form a basis

for {ϕA : A ∈ A}.

It may be of interest to observe that the standard representation is the restriction of

the natural action of Sn on Cn (i.e. πei = eπ(i)) to the (n − 1)-dimensional subspace of

vectors whose coordinates sum to zero, while the description of the eigenvectors from the
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CCLT involves matrices whose rows and columns sum to zero. The author is not sure

what to do with Proposition 3.3.3, but finds it very intriguing nonetheless.
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Chapter 4

Concluding Remarks

The primary contribution of this thesis has been the general derivation of the top eigen-

functions for Markov chains which can be represented as random walks on the chambers of

hyperplane arrangements. By adopting a perspective which focuses on the sign sequence

coordinates of the states and the update mechanisms, it is quite natural to employ ideas

related to lumping and products in this analysis. A broad lesson to be taken away from

this work is that when studying a random process, it may be fruitful to consider whether

it can be broken down into simpler components and examined from that point of view.

One advantage is that the constituent processes may be easier to work with, possibly be-

cause of a reduction in the size of the effective state space as was the case here. Also, since

the time needed for the original chain to be within some fixed distance of its stationary

distribution is necessarily greater than the corresponding time for any of its components,

one may be able to find nice lower bounds using such a decomposition. In addition,

this shift in focus may help reveal the driving force behind the chain’s mixing behavior.

For example, the rows of colored tiles paradigm underscores the fact that approach to

stationarity for hyperplane walks is largely a matter of coupon collecting. A variety of
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upper bounds on Markov chain mixing times - particularly those involving coupling and

strong stationary times - use coupon collector arguments (see [21, 53] for example) and

in many of these cases the “coupons” correspond to components of the states in some

representation. In the present work, we were able to study card shuffling schemes by rep-

resenting the states in terms of vectors of indicators of inversions, but other possibilities

include letting the components correspond to indicators of the position of each card or

to the coordinates of the Lehmer code of the associated permutation.

In light of the above observations, it seems useful to pursue some of the ideas in

Section 1.3 in greater detail. For example, it would be nice to know more about the

relationship between products and projections. It is interesting that several of the chains

considered here were amenable to investigation using either approach while others seemed

more difficult to study in terms of product chains. In addition, the fact that one could

recover eigenfunctions for the random-to-top shuffle using the product chain perspective

even though the component chains were not simultaneously diagonalizable suggests that

this approach is more generally applicable than the statement of Theorem 1.3.3 would

suggest. The author also intends to explore the ramifications of Theorem 1.3.2 for random

walks on groups more thoroughly. This idea was given only passing attention here as

it was tangential to the primary focus, but it is intriguing that the technique seems

to apply so broadly without any assumptions on the measure driving the walk. Like

hyperplane chamber walks, random walks on finite groups provide a diverse assortment

of interesting Markov chains and further contributions to the theory will almost certainly

prove propitious.

162



On a related note, in the setting of Theorem 1.3.1, one would like to know more

about when different equivalence relations yield linearly independent eigenfunctions. As

remarked at the end of Section 3.1, it seems likely that ideas related to lumping could

be used to recover parts of Theorem 2.2.1 in a more intuitive fashion and a large part

of the obstacle seems to be establishing when eigenfunctions corresponding to incompa-

rable flats are linearly independent. Though a variety of compelling proofs of Theorem

2.2.1 have been given and, in particular, the eigenvalue argument from [5] and the di-

agonalizability argument from [14] are quite simple, the known methods are somewhat

unsatisfying in that they rely on technical results more so than intuition concerning the

fundamental dynamics. In contrast, the projection paradigm does a partial job explain-

ing why the eigenvalues are indexed by flats and has the possibility of establishing linear

independence of certain eigenfunctions using the fact that they are constant over differ-

ent equivalence classes. Though the author doubts that the full strength of Theorem

2.1.1 can be recovered in this manner, this does seem to be an issue warranting further

investigation.

Another important avenue for future research involves constructing further examples

of chamber walks and exploring others in greater detail. From a theoretical point of view,

more examples provide a richer testing ground for various techniques and greater opportu-

nities to compare and contrast the saliency of different features of related processes. From

a more practical point of view, if one can situate problems of interest within this frame-

work, then they can call upon the many known results to simplify their investigations.

The author is especially interested in the possibilities afforded by the connection between

the braid arrangement and voting systems and intends to give this matter more serious
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thought in the future. Also, it seems likely that one could build interesting models using

rows of colored tiles with more than two opaque colors. In particular, this may provide

a convenient setting for studying certain product chains under less stringent conditions

than those given in Theorem 1.3.3. Finally, though the results from Chapter 3 extend

quite naturally to oriented matroids and rows of colored tiles, it is less clear how to use

these ideas for walks on left-regular bands. It would be nice to have a more concrete

description of the eigenvectors than is given in [62] and it is likely that this could be ac-

complished by considering lumped chains. To motivate this direction of inquiry, it would

again be useful to have more examples of such chains (other than hyperplane chamber

walks) like those given in [13].

Yet another possible research project would be to compute eigenfunctions correspond-

ing to intersections of multiple hyperplanes. Preliminary investigations and results from

[32] concerning smaller eigenvalues for riffle shuffles suggest that such eigenfunctions

will involve indicators of more involved inversion relations. One might then be able to

construct other permutation statistics than those given here (perhaps related to pat-

tern avoiding permutations or peaks and valleys) and study their behavior using Stein’s

method techniques as in Subsection 3.3.2. This is admittedly tedious work, but it has

the potential to produce interesting and useful theorems. Likewise, one may be able to

study other distributions, such as the Luce model, by constructing Stein type pairs from

appropriate eigenfunctions.

It would also be productive to try to use Theorem 2.2.3 to find improved upper

bounds on the mixing times of some of the walks considered here. Exploratory compu-

tations suggest that it will yield decidedly better estimates than the truncated bound in
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certain cases, but the author has been unable to obtain definitive results as of yet. It is

generally not too hard to explicitly write down the bound, but it seems that fairly clever

combinatorial arguments are required to effectively analyze the resulting sums. One of

the author’s more immediate research plans is to devote some serious attention to these

calculations.

Perhaps the most promising extension of the material in this thesis is a generalization

of Theorem 3.2.1 to arbitrary finite Coxeter groups. Though the argument given here

relied on specific properties of the symmetric group, it seems that similar ideas should

apply more generally: One has notions of inversions for all such groups and the symme-

tries involving sign sequence coordinates should persist in the broader setting. It is also

likely that analogous theorems exist for other eigenspaces as well. Moreover, the type of

reasoning used to show that the algebraic multiplicity of the top eigenvalue is
(
n
2

)
may

be applicable in determining which flats contribute a common eigenvalue. This in turn

should prove useful in explaining aspects of Theorem 2.1.1 in terms of projections.

The theory of hyperplane chamber walks offers a broad and unifying perspective on

many interesting Markov chains. The utility of this generality lies in the fact that one

can simultaneously establish many particular results by analyzing the broader framework

(as was done here in finding eigenfunctions and setting up Wilson bounds), and also in

establishing reference points with which to compare the differences in related processes

which are most important for various questions of interest. For example, comparing the

Tsetlin library with the random-to-top shuffle highlights the importance of symmetry,

both in regards to simplifying arguments and in contributing to high multiplicity of the

subdominant eigenvalue (which is believed to be of central importance in establishing
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cut-off [25]). The same applies to random walk on the hypercube with or without bias.

In a similar vein, the author finds it instructive to contrast the performance of the tech-

niques considered here for hypercube walks, random-to-top shuffles, and riffle shuffles.

For example, hypercube walks admit an almost complete description in terms of product

chains, random-to-top shuffles can be studied to some extent within this framework, and

riffle shuffles seem to resist all such efforts. In this case, it seems that the operative

difference is the extent to which various components interact: Hypercube walks change

at most one coordinate at each time step, top-to-random shuffles change only in terms

of relationships involving a single card, and the number of pairwise relative orderings of

cards which change after a single riffle shuffle can be on the order of the effective state

space. Likewise, Wilson’s method gives the correct lower bound for hypercube walks,

the correct order for random-to-top shuffles, and is useless for riffle shuffles. This seems

primarily to be a function of the size of the subdominant eigenvalue. Finally, the upper

bounds coming from coupling/strong stationary times (both in terms of the truncated

bound from Theorem 2.2.2 and the bound using stochastic monotonicity) are pretty good

for all three chains, but while giving the correct mixing rates for hypercube walks on

random-to-top shuffles, the bounds for riffle shuffles are again found to be lacking and

it is not as clear why this is so. The issue here does not seem to be the size of the top

eigenvalue, and all three chains are highly symmetric. The latter two even have the same

subdominant eigenspace. To get the correct bound for riffle shuffles, one must consider

more subtle aspects such as how the number of rising sequences changes after a shuffle

[6]. Though this information is encoded in the top eigenfunctions, the author has been
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unable to exploit this fact to obtain optimal bounds. However, this does provide some

indication that further uses of eigenfunctions are awaiting discovery.

As alluded to in the preceding paragraph, much of the motivation for examining par-

ticular Markov chains or classes thereof is the hope that more sweeping principles will

reveal themselves in the process. For example, we still do not have a general method

of determining whether a given Markov chain presents total variation cut-off without

finding explicit bounds. One would like at least to give conditions under which Peres’

condition [33] is sufficient as was done for the Lp distance by Chen and Saloff-Coste

[16]. In fact, the original aim of this thesis was to investigate the cut-off phenomenon

for hyperplane chamber walks, and the author’s focus on the behavior of sign sequence

coordinates stemmed from studying the problem in this light. Another general concern is

the development of new techniques for bounding mixing times. A variety of approaches

are known at present, but their applicability varies from case to case and there are many

examples for which optimal bounds remain elusive. In particular, there is a shortage of

general methods for obtaining lower bounds. It seems to be the consensus in the Markov

chain community that lower bounds are generally the easy part because of the definitions

of total variation in terms of maxima, but it has been the author’s experience that the

task is quite formidable when no distinguished events or statistics immediately present

themselves. This is largely due to the lack of machinery, eigenvector-based or other-

wise, for tackling this problem, and one hopes that by obtaining increasingly complete

descriptions of certain classes of Markov chains, it will be possible to test and develop

new strategies. It would be especially nice to have spectral lower bounds which take the

multiplicity of the subdominant eigenvalue into account, and the author suspects that
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information concerning the corresponding eigenbasis would play a role in the derivation

if such bounds exist. A final observation is that many of the classical results in Markov

chain theory are specific to reversible chains and most investigations have been restricted

to this setting accordingly. An advantage of studying hyperplane walks is that they pro-

vide a sort of middle ground in that they are diagonalizable with real eigenvalues despite

being nonreversible in general. As such, they provide an excellent opportunity to gener-

alize results originally stated for reversible chains, and it would be an interesting exercise

to test whether some of these results also hold in the hyperplane setting.
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[67] B. Steinberg. Möbius functions and semigroup representation theory, J. Combin.

Theor. Ser. A. 113 (2006), 866-881.

176



[68] H. Terao. Chambers of arrangements of hyperplanes and Arrow’s impossibility the-

orem. Adv. Math. 214 (2007), no. 1, 366-378.

[69] H. Whitney. On the Abstract Properties of Linear Dependence. Amer. J. Math. 57

(1935), no. 3, 509-533.

[70] D.B. Wilson. Mixing times of lozenge tiling and card shuffling Markov chains, Ann.

Appl. Probab. 14 (2004), no.1, 274-325.

[71] T. Zaslavsky. Facing up to arrangements: Face-count formulas for partitions of spaces

by hyperplanes, PhD Thesis, Massachusetts Institute of Technology, 1974.

[72] H. Zhou. Examples of multivariate Markov chains with orthogonal polynomial eigen-

functions. PhD Thesis, Stanford University. ProQuest LLC, Ann Arbor, MI, 2008.

177


